C O M M U N I C A T I O N S
molecular catalysis in nanocarbon chemistry.10 Work along this line,
as well as the development of a more efficient catalyst, is ongoing.
Table 2. Rh-Catalyzed Arylation and Alkenylation to C60 Using
Organoboron Compoundsa
Acknowledgment. This paper is dedicated to the memory of
Professor Yoshihiko Ito. Support has been provided in part by
PRESTO, Japan Science and Technology Agency (JST).
Supporting Information Available: Experimental procedures and
compound characterization data. This material is available free of charge
entry
RB(OH)2 (1)
2
convb
yieldc
selectivityd
1
2
C6H5B(OH)2 (1a)
2a 47% 45% (40%) >95%
2b 50% 49% (40%) >95%
2c 64% 53% (46%) 83%
2d 80% 80% (69%) >95%
2e 38% 38% (32%) >95%
2f 52% 45% (35%) 87%
2f 62% 51% (43%) 82%
4-MeC6H4B(OH)2 (1b)
References
3e,f 2-MeC6H4B(OH)2 (1c)
(1) (a) Hirsch, A.; Brettreich, M. Fullerenes: Chemistry and Reactions; Wiley-
VCH: Weinheim, Germany, 2005. (b) Kadish, K. M., Ruoff, R. S., Eds.
Fullerenes: Chemistry, Physics, and Technology; Wiley: New York,
2000. (c) Martin, N. Chem. Commun. 2006, 2093.
4f
5
6
7
2,6-Me2C6H3B(OH)2 (1d)
4-ClC6H4B(OH)2 (1e)
4-MeOC6H4B(OH)2 (1f)
4-MeOC6H4BF3K (1f′)
(2) (a) Wudl, F.; Hirsch, A.; Khemani, K. C.; Suzuki, T.; Allemand, P. M.;
Kosch, A.; Eckert, H.; Srdanov, G.; Webb, H. M. ACS Symposium Series
481; American Chemical Society: Washington, DC, 1992; p 161. (b)
Hirsch, A.; Soi, A.; Karfunkel, H. R. Angew. Chem., Int. Ed. Engl. 1992,
31, 766. (c) Fagan, P. J.; Krusic, P. J.; Evans, D. H.; Lerke, S. A.; Johnston,
E. J. Am. Chem. Soc. 1992, 114, 9697. (d) Hirsch, A.; Gro¨sser, T.; Skiebe,
A.; Soi, A. Chem. Ber. 1993, 126, 1061. (e) Nagashima, H.; Terasaki,
H.; Kimura, E.; Nakajima, K.; Itoh, K. J. Org. Chem. 1994, 59, 1246. (f)
Komatsu, K.; Murata, Y.; Takimoto, N.; Mori, S.; Sugita, N.; Wan, T. S.
M. J. Org. Chem. 1994, 59, 6101. (g) Sawamura, M.; Iikura, H.;
Nakamura, E. J. Am. Chem. Soc. 1996, 118, 12850. (h) Matsuo, Y.; Tahara,
K.; Morita, K.; Matsuo, K.; Nakamura, E. Angew. Chem., Int. Ed. 2007,
46, 2844.
(3) Examples: (a) Zhou, S.; Burger, C.; Chu, B.; Sawamura, M.; Nagahama,
N.; Toganoh, M.; Hackler, U. E.; Isobe, H.; Nakamura, E. Science 2001,
291, 1944. (b) Sawamura, M.; Kawai, K.; Matsuo, Y.; Kanie, K.; Kato,
T.; Nakamura, E. Nature 2002, 419, 702. (c) Murata, Y.; Ito, M.; Komatsu,
K. J. Mater. Chem. 2002, 12, 2009. (d) Matsuo, Y.; Tahara, K.; Sawamura,
M.; Nakamura, E. J. Am. Chem. Soc. 2004, 126, 8725. (e) Yamazaki, T.;
Murata, Y.; Komatsu, K.; Furukawa, K.; Morita, M.; Maruyama, N.;
Yamao, T.; Fujita, S. Org. Lett. 2004, 6, 4865. (f) Zhong, Y.-W.; Matsuo,
Y.; Nakamura, E. Org. Lett. 2006, 8, 1463. (g) Zhong, Y.-W.; Matsuo,
Y.; Nakamura, E. J. Am. Chem. Soc. 2007, 129, 3052.
8g 4-MeC(O)C6H4B(OH)2 (1g) 2g 47% 47% (42%) >95%
9e,f 1-naphthylB(OH)2 (1h)
10e,f 1-pyrenylB(OH)2 (1i)
2h 68% 55% (51%) 81%
2i 69% 56% (49%) 81%
11h (E)-C6H5CHdCHBF3K (1j′) 2j 51% 36% (34%) 67%
12g 3-thienylB(OH)2 (1k)
2k 53% 53% (48%) >95%
a Molar ratio: C60/1/Rh ) 1:1.5:0.1. b Conversion of C60 determined by
HPLC using C70 as an internal standard. c Yield of 2 determined by HPLC
using C70 as an internal standard. The number in parenthesis is the isolated
yield. d Selectivities were determined by [yield of 2]/[conversion of C60].
e Reactions conducted at room temperature. C60/1/Rh ) 1:1.2:0.1. g [RhO-
f
H(cod)]2 was used. h H2O/1,2-Cl2C6H4 ) 1:9.
(4) Pioneering works: (a) Sakai, M.; Hayashi, H.; Miyaura, N. Organome-
tallics 1997, 16, 4229. (b) Takaya, Y.; Ogasawara, M.; Hayashi, T.; Sakai,
M.; Miyaura, N. J. Am. Chem. Soc. 1998, 120, 5579. Reviews: (c) Fagnou,
K.; Lautens, M. Chem. ReV. 2003, 103, 169. (d) Hayashi, T.; Yamasaki,
K. Chem. ReV. 2003, 103, 2829. Selected recent examples in this area:
(e) Paquin, J.-F.; Defieber, C.; Stephenson, C. R. J.; Carreira, E. M. J.
Am. Chem. Soc. 2005, 127, 10850. (f) Tseng, N.-W.; Mancuso, J.; Lautens,
M. J. Am. Chem. Soc. 2006, 128, 5338. (g) Shintani, R.; Duan, W.-L.;
Hayashi, T. J. Am. Chem. Soc. 2006, 128, 5628. (h) Tonogaki, K.; Itami,
K.; Yoshida, J. Org. Lett. 2006, 8, 1419. (i) Miura, T.; Murakami, M.
Chem. Commun. 2007, 217. (j) Walter, C.; Auer, G.; Oestreich, M. Angew.
Chem., Int. Ed. 2007, 45, 5675. (k) Kurahashi, T.; Shinokubo, H.; Osuka,
A. Angew. Chem., Int. Ed. 2006, 45, 6336. (l) Uehara, K.; Miyamura, S.;
Satoh, T.; Miura, M. J. Organomet. Chem. 2006, 691, 2821. (m) Ukai,
K.; Aoki, M.; Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. 2006, 128, 8706.
(5) Boronic acid derivatives are air-stable, storable, and easily accessible by
various methods. For general views for boronic acid derivatives, see: Hall,
D. G., Ed. Boronic Acids; Wiley-VCH: Weinheim, Germany, 2005. Over
750 boronic acid derivatives are now commercially available from Sigma-
Aldrich (http://www.sigmaaldrich.com).
Figure 1. Other representative functionalized fullerenes.
structurally diverse boronic acids. In all cases examined, selectivity
was good to excellent. Functional groups, such as the acetyl group,
which usually cannot be applied in the existing organometallic
additions, have been found to be compatible (entry 8).7 Extended
π-systems such as naphthyl, pyrenyl, and styryl groups can also
be introduced (entries 9-11). Although some heteroarylboronic
acids, such as 3-thienylboronic acid, possessed low reactivity, the
use of highly reactive [RhOH(cod)]2 was found to be a solution
for such sluggish reagents (entry 12). The use of potassium trifluoro-
(organo)borates gave better results in some cases (entries 6 and
7).8 A moderate electronic effect of the aryl group was observed
for the reaction efficiency, but we unexpectedly found that ortho-
substituted 1c and 1d reacted markedly faster than the other
arylboronic acids.9
Other functionalized fullerenes were also created by the present
rhodium catalysis (Figure 1; see Supporting Information for details).
For example, when protected phenylalanine equipped with the
B(OH)2 group was reacted, a fullerene-tagged amino acid 3 was
obtained. This may be useful for various biological applications.1
When 9,9-dihexylfluorene-2,7-diboronic acid was reacted with 2
molar amounts of C60, two-directional reaction occurred, yielding
an interesting fullerene-capped π-system 4.
(6) Throughout this paper, “selectivity” stands for a ratio of the quantity of
desired product over the quantity of substrate converted (Orchin, M.;
Macomber, R. S.; Pinhas, A. R.; Wilson, R. M., The Vocabulary and
Concepts of Organic Chemistry, 2nd ed.; Wiley-Interscience: New Jersey,
2005).
(7) For an exception in this regard, see ref 3f.
(8) Potassium trifluoro(organo)borates in rhodium-catalyzed conjugate addi-
tions: (a) Navarre, L.; Pucheault, M.; Darses, S.; Genet, J.-P. Tetrahedron
Lett. 2005, 46, 4247. (b) Duursma, A.; Boiteau, J.-G.; Lefort, L.; Boogers,
J. A. F.; de Vries, A. H. M.; de Vries, J. G.; Minnaard, A. J.; Feringa, B.
L. J. Org. Chem. 2004, 69, 8045. (c) Moss, R. J.; Wadsworth, K. J.;
Chapman, C. J.; Frost, C. G. Chem. Commun. 2004, 1984.
(9) Recently, Hartwig also found a similar ortho-substitution effect in
transmetalation from boron to rhodium, which might be closely related
to the present reaction: (a) Zhao, P.; Incarvito, C. D.; Hartwig, J. F. J.
Am. Chem. Soc. 2007, 129, 1876. Kakiuchi also observed a seemingly
similar effect in ruthenium catalysis using arylboronates: (b) Kakiuchi,
F.; Matsuura, Y.; Kan, S.; Chatani, N. J. Am. Chem. Soc. 2005, 127, 5936.
(10) Catalytic modification of C60: (a) Becker, L.; Evans, T. P.; Bada, J. L. J.
Org. Chem. 1993, 58, 7630. (b) Shiu, L.-L.; Lin, T.-I.; Peng, S.-M.; Her,
G.-R.; Ju, D. D.; Lin, S.-K.; Hwang, J.-H.; Mou, C. Y.; Luh, T.-Y. J.
Chem. Soc., Chem. Commun. 1994, 647. (c) Shen, C. K. F.; Chien, K.-
M.; Liu, T.-Y.; Lin, T.-I.; Her, G.-R.; Luh, T.-Y. Tetrahedron Lett. 1995,
36, 5383. (d) Gan, L.; Huang, S.; Zhang, X.; Zhang, A.; Cheng, B.; Cheng,
H.; Li, X.; Shang, G. J. Am. Chem. Soc. 2002, 124, 13384. For catalytic
transformation of functionalized fullerenes, see: (e) Matsuo, Y.; Iwashita,
A.; Nakamura, E. Chem. Lett. 2006, 35, 858.
In summary, we have established a new organoboron-based
arylation and alkenylation of C60 catalyzed by a rhodium complex.
The described chemistry not only broadens the scope of the
functionalization chemistry of fullerenes, thereby providing a new
synthetic avenue to a wide variety of previously unexplored
fullerene-based materials, but also represents a new direction for
JA073042X
9
J. AM. CHEM. SOC. VOL. 129, NO. 26, 2007 8081