Angewandte
Chemie
Removal of the PMP group (82%) of 24 and subsequent
core fucosylation (75%) finally gave the dodecasaccharide 26.
Global deprotection of the base labile groups and N-
acetylation was achieved in three steps and in a one-pot
reaction to furnish the dodecasaccharide 27. Compound 27 is
a derivative of F and contains an azide group for the
generation of neoglycoproteins or glycopeptides.
Herein we have reported the first chemical synthesis of
highly branched pentaantennary N-glycans and derivatives
with bisecting and core fucosyl modifications. The hindered
glycosylation reactions were systematically optimized after
the identification of key protecting groups which reduce the
proximal and peripheral crowding. The use of a universally
applicable modular set of building blocks is expected to
facilitate the general chemical synthesis of branched N-
glycans.
Received: November 24, 2006
Revised: January 23, 2007
Published online: April 20, 2007
Keywords: carbohydrates · glycoproteins · glycosylation ·
.
protecting groups · steric hindrance
[1]B. Lowe, A. Varki, Essentials in Glycobiology, Cold Spring
Harbor Laboratory Press, Cold Spring Harbor, 1999.
[2]A. Düffels, S. V. Ley, J. Chem. Soc. Perkin Trans. 1 1999, 375.
[3]D. M. Ratner, E. R. Swanson, P. H. Seeberger, Org. Lett. 2003, 5,
4717.
Scheme 5. a) D, BF3·OEt2, CH2Cl2, À108C, MS (4 ), (22, 9%); b) 8,
NIS, TfOH, CH2Cl2, À308C, MS (4 ) (22, 8%); c) 9, NIS, TfOH,
CH2Cl2, À308C, MS (4 ) (23, 31%); d) 10, NIS, TfOH, CH2Cl2,
À308C, MS (4 ) (24, 47%); e) 11, NIS, TfOH, CH2Cl2, À308C, MS
(4 ) (25, 38%); f) 1. CAN, CH3CN, toluene, H2O, 82%; 2. E, CuBr2,
Bu4NBr, CH2Cl2, DMF, 75%; g) 1. ethylenediamine, nBuOH, 808C;
2. Ac2O, pyridine; 3. MeNH2 (40% in H2O) (1.–3., 59%).
[4]H. Weiss, C. Unverzagt, Angew. Chem. 2003, 115, 4389; Angew.
Chem. Int. Ed. 2003, 42, 4261.
[5]G. M. Watt, G. J. Boons, Carbohydr. Res. 2004, 339, 181.
[6]V. Y. Dudkin, J. S. Miller, S. J. Danishefsky, J. Am. Chem. Soc.
2004, 126, 736.
[7]Y. Ito, S. Hagihara, I. Matsuo, K. Totani, Curr. Opin. Struct. Biol.
2005, 15, 481.
when pure donor 9 was used, the yield of undecasaccharide 23
increased to 31%. In contrast, pure donor 8 gave only 8% of
the undecasaccharide 22 after an identical workup. We
assumed that the low yields obtained with imidate D and
thioglycoside 8 were linked to the steric bulk of the 3-O-
acetylated tetrasaccharide moiety. To further reduce the
overall bulk of donor 9, the peripheral phthalimido groups
were replaced by the smaller trifluoroacetamide groups. The
N-trifluoroacetylated donors 10 and 11 were synthesized from
donor 9 (Scheme 2). The undecasaccharide 25 was obtained in
38% yield from the 3-O-acetylated donor 11. Donor 10,
which lacked the acetate at the O3 position, gave 47% of
undecasaccharide 24. The acetyl moiety at the O3 position
can lower the reactivity of donors D, 8, and 11 through
electronic and steric effects. Thus the increased yields of the
bisected undecasaccharides using the modified donors 9 and
10 may benefit from the inverted effects. The peripheral
phthalimido groups and the acetate at the O3 position of the
activated mannoside are key positions that simultaneously
affect the reactivity of the donors.
[8]B. Li, H. Song, S. Hauser, L.-X. Wang, Org. Lett. 2006, 8, 3081.
[9]T. W. Rising, T. D. Claridge, N. Davies, D. P. Gamblin, J. W.
Moir, A. J. Fairbanks, Carbohydr. Res. 2006, 341, 1574.
[10]S. Jonke, K. G. Liu, R. R. Schmidt, Chem. Eur. J. 2006, 12, 1274.
[11]K. G. Rice, Anal. Biochem. 2000, 283, 10.
[12]C. Unverzagt, Angew. Chem. 1997, 109, 2078; Angew. Chem. Int.
Ed. Engl. 1997, 36, 1989.
[13]C. Unverzagt, J. Seifert, Tetrahedron Lett. 2000, 41, 4549.
[14]R. Schuberth, C. Unverzagt, Tetrahedron Lett. 2005, 46, 4201.
[15]J. Seifert, C. Unverzagt, Tetrahedron Lett. 1996, 37, 6527.
[16]K. Yamashita, J. P. Kamerling, A. Kobata, J. Biol. Chem. 1982,
257, 12809.
[17]T. Taguchi, K. Kitajima, Y. Muto, S. Yokoyama, S. Inoue, Y.
Inoue, Eur. J. Biochem. 1995, 228, 822.
[18]L.-L. Y. Frado, J. E. Strickler, Electrophoresis 2000, 21, 2296.
[19]B. Campion, D. Leger, J. M. Wieruszeski, J. Montreuil, G. Spik,
Eur. J. Biochem. 1989, 184, 405.
[20]V. K. Srivastava, C. Schuerch, Tetrahedron Lett. 1979, 20, 3269.
[21]N. Nagashima, M. Ohno, Chem. Lett. 1987, 141.
[22]J. M. Lassaletta, K. Carlsson, P. J. Garegg, R. R. Schmidt, J. Org.
Chem. 1996, 61, 6873.
[23]D. Qiu, R. R. Koganty, Tetrahedron Lett. 1997, 38, 961.
Angew. Chem. Int. Ed. 2007, 46, 4173 –4175
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
4175