and concentrated under reduced pressure to yield a pale yellow
oil. Flash column chromatography on silica gel eluted with 6 : 1
hexane : ethylacetate gave 15a (5.3 mg, 45%) as a colorless oil and
15b (2.7 mg, 22%, Rf = 0.33 in 6 : 1 hexane : ethylacetate) as a
colorless oil. All spectral data for this compound matched those
reported previously.15
Acknowledgements
We thank the National Institutes of Health (CA 83925 and CA
119131) for support of this research.
Notes and references
1 K. S. Gates, in Comprehensive Natural Products Chemistry, ed.
E. T. Kool, Pergamon, New York, 1999, vol. 7, pp. 491–552.
2 W. C. Tse and D. L. Boger, Chem. Biol., 2004, 11, 1607–1617.
3 K. S. Gates, Chem. Res. Toxicol., 2000, 13, 953–956.
4 M. Hara, K. Asano, I. Kawamoto, T. Takiguchi, S. Katsumata, K.-I.
Takahashi and H. Nakano, J. Antibiot., 1989, 42, 1768–1774.
5 M. Hara, Y. Saitoh and H. Nakano, Biochemistry, 1990, 29, 5676–
5681.
6 M. Hara, I. Takahashi, M. Yoshida, I. Kawamoto, M. Morimoto and
H. Nakano, J. Antibiot., 1989, 42, 333–335.
7 S. B. Behroozi, W. Kim and K. S. Gates, J. Org. Chem., 1995, 60,
3964–3966.
Trapping by methyl iodide of the sulfenate intermediate 14a
generated from 13a
To a stirred solution of 13a (20 mg, 0.046 mmol) in THF (1 mL)
under nitrogen, tetrabutylammonium fluoride (0.37 mL of a 1 M
solution in THF, 0.37 mmol, 0.27 M), and excess methyl iodide
(0.14 mL, 2.3 mmol, for a final concentration of 1.7 M) were added.
The reaction was stirred for 3 h and quenched by dilute HCl (1 mL
of a 1 M solution, pH ≈ 3). To this biphasic reaction mixture,
diazomethane (2 mL of a ∼0.66 M solution in ether, warning:
EXPLOSION HAZARD) was added with vigorous stirring. After
30 min, the mixture was extracted with diethyl ether (3 × 5 mL).
The combined ether extracts were washed with water (1 × 5 mL)
followed by brine (1 × 5 mL), dried over anhydrous sodium
sulfate and evaporated under reduced pressure. Flash column
chromatography on silica gel eluted with 4 : 1 hexane : ethylacetate
yielded 15a (3 mg, 25%) and 16 (4.3 mg, 35%, Rf = 0.09 in 4 : 1
hexane : ethylacetate). 1H-NMR (500 MHz, CDCl3) d 7.46 (d, J =
3.75 Hz, 1 H), 7.42 (t, J = 3.75 Hz, 1 H), 7.37 (d, J = 3.75 Hz),
5.20 (m, 1 H), 3.93 (s, 3 H), 3.68 (d, J = 3.5 Hz, 2 H), 3.05 (s, 3 H),
1.74 (d, J = 5.5 Hz, 6 H) ppm. 13C-NMR (125.75 MHz, CDCl3)
d 168.34, 141.87, 141.40, 133.93, 132.92, 131.87, 130.45, 127.58,
121.93, 52.65, 40.17, 30.37, 25.62, 18.05 ppm. HRMS (EI) calcd
for C14H18O3S [M +] 266.0976, found 266.0973.
8 A. Asai, M. Hara, S. Kakita, Y. Kanda, M. Yoshida, H. Saito and Y.
Saitoh, J. Am. Chem. Soc., 1996, 118, 6802–6803.
9 S. J. Behroozi, W. Kim, J. Dannaldson and K. S. Gates, Biochemistry,
1996, 35, 1768–1774.
10 K. Mitra, W. Kim, J. S. Daniels and K. S. Gates, J. Am. Chem. Soc.,
1997, 119, 11691–11692.
11 T. Chatterji and K. S. Gates, Bioorg. Med. Chem. Lett., 1998, 8, 535–
538.
12 T. Chatterji and K. S. Gates, Bioorg. Med. Chem. Lett., 2003, 13, 1349–
1352.
13 T. Chatterji, K. Keerthi and K. S. Gates, Bioorg. Med. Chem. Lett.,
2005, 15, 3921–3924.
14 H. Zang and K. S. Gates, Chem. Res. Toxicol., 2003, 16, 1539–1546.
15 T. Chatterji, M. Kizil, K. Keerthi, G. Chowdhury, T. Posposil and K. S.
Gates, J. Am. Chem. Soc., 2003, 125, 4996–4997.
16 J. S. O’Donnell and A. L. Schwan, J. Sulfur Chem., 2004, 25, 183–211.
17 K. Goto, M. Holler and R. Okazaki, J. Am. Chem. Soc., 1997, 119,
1460–1461.
18 T. Okuyama, K. Miyake, T. Fueno, T. Yoshimura, S. Soga and E.
Tsukurimichi, Heteroat. Chem., 1992, 3, 577–583.
19 H. Adams, J. C. Anderson, R. Bell, D. N. Jones, M. R. Peel and N. C. O.
Tomkinson, J. Chem. Soc., Perkin Trans. 1, 1998, 3967–3973.
20 M. Hashmi, S. Vamvakas and M. W. Anders, Chem. Res. Toxicol.,
1992, 5, 360–365.
21 E. Block, Angew. Chem., Int. Ed. Engl., 1992, 31, 1135–1178.
22 J. W. Cubbage, Y. Guo, R. D. McCulla and W. S. Jenks, J. Org. Chem.,
2001, 66, 8722–8736.
Fluoride-independent conversion of 13a and 13b in aqueous buffer
followed by diazomethane workup to yield 2-(1-hydroxy-1-
methylethyl)-2,3-dihydrobenzo[b]thiophene-7-carboxylic acid
methyl ester (10) in acetonitrile–aqueous buffer
23 F. Nagatsugi, T. Kawasaki, D. Usui, M. Maeda and S. Sasaki, J. Am.
Chem. Soc., 1999, 121, 6753–6754.
Compound 13a (20 mg, 0.046 mmol) was stirred in a solution
of acetonitrile (2.5 mL), sodium phosphate buffer (0.5 mL of
a 500 mM, pH 7), and water (2 mL). Final concentrations in
the reaction mixture were: 13a, 9.2 mM, sodium phosphate,
50 mM, pH 7, acetonitrile 50% by volume. Dilute HCl (1 mL
of a 1 M solution, pH ≈ 3) was added to the reaction, followed
by diazomethane (2 mL of a ∼0.66 M solution in ether, warning:
EXPLOSION HAZARD). The mixture was stirred for 30 min
and then extracted with diethyl ether (3 × 5 mL). The combined
ether extracts were washed with water (1 × 5 mL) and brine (1 ×
5 mL), dried over anhydrous sodium sulfate, and concentrated
under reduced pressure to yield a pale yellow oil. Flash column
chromatography on silica gel eluted with 6 : 1 hexane : ethylacetate
yielded 10 as a colorless oil (3.9 mg, 33%, Rf = 0.15 in 6 : 1 hexane :
ethylacetate). All spectral data for this compound matched those
reported previously. Similarly, 13b affords 10 (32% yield) under
these reaction conditions. It is noteworthy that addition of KF
(50 mM) does not alter the rate or yield of this reaction. Finally,
compounds 13c and 13d remained unchanged when subjected to
the conditions described above (either with or without KF).
24 A. R. Katritzky, I. Takahashi and C. M. Marson, J. Org. Chem., 1986,
51, 4914–4920.
25 C. Caupene, C. Boudou, S. Perrio and P. Metzner, J. Org. Chem., 2005,
70, 2812–2815.
26 M. C. Aversa, A. Barattucci, P. Bonaccorsi and P. Giannetto, J. Org.
Chem., 2005, 70, 1986–1992.
27 P. Rose, M. Whiteman, P. K. Moore and Y. Z. Zhu, Nat. Prod. Rep.,
2005, 22, 351–368; R. Kubec, S. Kim, D. M. McKeon and R. A. Musah,
J. Nat. Prod., 2002, 65, 960–964.
28 J. S. O’Donnell and A. L. Schwan, Tetrahedron Lett., 2003, 44, 6293–
6296.
29 S. Chambert, J. Desire and J.-L. Decout, Synthesis, 2002, 2319–2334.
30 S. A. Everett, L. K. Folkes and P. Wardman, Free Radical Res., 1994,
20, 387–400.
31 A. H. Otto and R. Steudel, Eur. J. Inorg. Chem., 1999, 2057–2061.
32 W. Adam, J. Bialas and L. Hadjiarapoglou, Chem. Ber., 1991, 124,
2377.
33 D. R. Hogg and A. Robertson, Tetrahedron Lett., 1974, 15, 3783–
3784.
34 Sulfenic acids (RSOH) can also act as electrophiles that are susceptible
to nucleophilic attack at the sulfur atom. See reference 17 and: S.
Sivaramakrishnan, K. Keerthi and K. S. Gates, J. Am. Chem. Soc.,
2005, 127, 10830–10831.
35 For
a related example involving intramolecular attack of an
a-effect nucleophile, hydroxylamine (RNHOH), on a methyl ester,
This journal is
The Royal Society of Chemistry 2007
Org. Biomol. Chem., 2007, 5, 1595–1600 | 1599
©