Azaindole and Thienopyrrole Synthesis
conditions and high functional group compatibility of Pd
chemistry. Compared to azaindoles, synthetic methods for
thienopyrroles are much more limited and include Friedel-
Crafts acylation followed by aromatization,29 reductive ketone
amine condensation,30 and aldol condensation,31 nitrene C-H
insertion cyclization using azides32 or nitrothiophene,33 intramo-
lecular Heck reaction,34 and a Rh(II)-mediated-Wolff rearrange-
ment-cyclization sequence.35 Again, these methods mostly suffer
from drawbacks including low yields or difficult access to the
starting materials. There are no previous reports of a single,
general method to produce all the possible isomers of azaindoles
and thienopyrroles.
In the context of developing rapid and efficient access to a
diverse family of indole compounds via a tandem Pd-catalyzed
C-N/C-C coupling or Cu-catalyzed double amidation of gem-
dihalovinylaniline systems,36 we sought to extend our methodol-
ogy to the synthesis of azaindoles and thienopyrroles. We report
herein our success in this endeavor leading to these important
families of molecules.
Synthetic routes to azaindoles or thienopyrroles are not always
straightforward since the most general and effective processes,
such as the Fischer indole method, often fail to give azaindoles
and thienopyrroles.15 Typical methods of azaindole synthesis
are Madelung-type cyclization,16 Gassman-type cyclization,17
Bartoli-type cyclization,18 intramolecular nitrene C-H insertion
cyclization,16a ketone amine condensation,19 electrophilic cy-
clization Via a Pictet-Spengler reaction,20 and Friedel-Crafts
type cyclization followed by dehydration.21 These traditional
methods suffer from low yields, limited reaction scope, and
harsh reaction conditions; hence, very few functional groups
are compatible.22 More recently, Pd-catalyzed alkynyl amine
formation/cyclization,23 Heck reaction,24 Larock-type annula-
tion,25 Ar-Pd-X-mediated cyclization of alkynyl amines,26
ring-opening of a spiro pyridone-cyclopropane followed by
cross-couplings,27 and a double Buchwald-Hartwig C-N
coupling28 show very attractive features which overcome the
shortcomings of traditional methods owing to the mild reaction
Results and Discussion
Solution for Catalyst Poisoning. Initial experiments showed
that the conditions we developed for indole synthesis (eq 1 in
Scheme 1) via a tandem C-N/Suzuki coupling of gem-
dibromovinylaniline 2 failed to give the desired 7-azaindole
product 3 (eq 2 in Scheme 1). Not only did the starting material
decompose under the reaction conditions, the starting material
(or the decomposed products) poisoned the catalyst in a control
experiment (eq 3 in Scheme 1). Attempts to synthesize 6-, 5-,
or 4-azaindoles under these conditions all failed to result in the
desired products.
(10) Beight, D. W.; Morin, J. M.; Sawyer, J. S.; Smith, E. C. R. (Eli
Lilly, Indianapolis) WO 2002012249, 2002.
(11) Barker, A. J.; Kettle, J. G.; Faull, A. W. (Zeneca Ltd, UK) WO
9940914, 1999.
(12) Birch, A. M.; Morley, A. D.; Stocker, A.; Whittamore, P. R. O.
(Astrazeneca) WO 2003074532, 2003.
There are only a few cases of C-N coupling between free
aminopyridines and aryl halides employing bidentate phosphine
ligands.37 Moreover, it is well-established that the free NH2
group in aminopyridines retards the Pd-catalytic cycle.38 Early
studies on Pd-catalyzed C-N coupling reactions using a
monodentate phosphine ligand showed that primary amines are
generally poor substrates due to formation of the aryl palladium
bis-amine complex, which failed to undergo reductive elimina-
tion.39 Therefore, formation of complex 4 from the gem-
(13) Arnould, J. C. (Astrazeneca) WO 2004018479, 2004.
(14) Attenni, B.; Hernando, J. I. M.; Malancona, S. N. F.; Ontoria Ontoria,
J. M.; Rowley, M. (Istituto di Ricerche di Biologia Molecolare P Angeletti
S.p.A., Italy) WO 2005023819, 2005.
(15) Molina, A.; Vaquero, J. J.; Garcia-Navio, J. L.; Alvarez-Builla, J.;
Pascual-Teresa, B.; Gago, F.; Rodrigo, M. M.; Ballesteros, M. J. Org. Chem.
1996, 61, 5587.
(16) (a) Fisher, M. H.; Schwartzkopf, G., Jr.; Hoff, D. R. J. Med. Chem.
1972, 15, 1168. (b) Turner, J. A. J. Org. Chem. 1983, 48, 3401. (c) Lorenz,
R. R.; Tullar, B. F.; Koelsch, G. F.; Archer, S. J. Org. Chem. 1965, 30,
2531. (d) Hands, D.; Bishop, B.; Cameron, M.; Edwards, J. S.; Cottrell, I.
F.; Wright, S. H. B. Synthesis 1996, 877. (e) Song, J. J.; Tan, Z.; Gallou,
F.; Xu, J.; Yee, N. K.; Senanayake, C. H. J. Org. Chem. 2005, 70, 6512.
(17) Debenham, S. D.; Chan, A.; Liu, K.; Price, K.; Wood, H. B.
Tetradedron Lett. 2005, 46, 2283.
(29) Matteson, D. S.; Snyder, H. R. J. Am. Chem. Soc. 1957, 79, 3610.
(30) Gale, W. W.; Scott, A. N.; Snyder, H. R. J. Org. Chem. 1964, 29,
2160.
(31) Soth, S.; Farnier, M.; Paulmier, C. Can. J. Chem. 1978, 56, 1429.
(32) (a) Hemetsberger, H.; Knittel, D. Monatsh. Chem. 1972, 103, 194.
(b) Gairns, R. S.; Moody, C. J.; Rees, C. W. J. Chem. Soc., Chem. Commun.
1985, 1818.
(18) Zhang, Z.; Yang, Z.; Meanwell, M. A.; Kadow, J. F.; Wang, T. J.
Org. Chem. 2002, 67, 2345.
(19) Estel, L.; Marsais, F.; Que´guiner, G. J. Org. Chem. 1988, 53, 2740.
(20) Rousseau, J.-F.; Dodd, R. H. J. Org. Chem. 1998, 63, 2731.
(21) Dekhane, M.; Potier, P.; Dodd, R. H. Tetrahedron, 1993, 49, 8139.
(22) For a review, see: Hyaric, M.; Viera de Almeida, M.; Nora de
Souza, M. V. Quim. NoVa 2002, 25, 1165.
(33) Srinivasan, K.; Srinivasan, K. G.; Balasubramanian, K. K.; Swa-
minathan, S. Synthesis 1973, 313.
(23) KOt-Bu in NMP: (a) Koradin, C.; Dohle, W.; Rodriguez, A. L.;
Schmid, B.; Knochel, P. Tetrahedron 2003, 59, 1571. (b) Rodriguez, A.
L.; Koradin, C.; Dohle, W.; Knochel, P. Angew. Chem., Int. Ed. 2000, 39,
2488. (c) McLaughlin, M.; Palucki, M.; Davies, I. W. Org. Lett. 2006, 8,
3307. CuI in DMF: (d) Xu, L.; Lewis, I. R.; Davidsen, S. K.; Summers, J.
B. Tetrahedron Lett. 1998, 39, 5159.
(24) (a) Nazare´, M.; Schneider, C.; Lindenschmidt, A.; Will, D. W.
Angew. Chem., Int. Ed. 2004, 43, 4526. (b) Lachance, N.; April, M.; Joly,
M.-A. Synthesis 2005, 2571.
(25) (a) Ujjainwalla, F.; Warner, D. Tetrahedron Lett. 1998, 39, 5355.
(b) Curtis, N. R.; Kulagowski, J. J.; Leeson, P. D.; Ridgill, M. P.; Emms,
F.; Freedman, S. B.; Patel, S.; Patel, S. Bioorg. Med. Chem. Lett. 1999, 9,
585.
(34) Wensbo, D.; Annby, U.; Gronowitz, S. Tetrahedron 1995, 51, 10323.
(35) Lee, D. J.; Kim, K.; Park, Y. J. Org. Lett. 2002, 4, 873.
(36) (a) Fang, Y.-Q.; Lautens, M. Org. Lett. 2005, 7, 3549. (b) Yuen, J.;
Fang, Y.-Q.; Lautens, M. Org. Lett. 2006, 8, 653. (c) Fayol, A.; Fang, Y.-
Q.; Lautens, M. Org. Lett. 2006, 8, 4203. (d) Lautens, M.; Alberico, D.;
Bressy, C.; Fang, Y-Q.; Mariampillai, B.; Wilhelm, T. Pure. Appl. Chem.
2006, 78, 351.
(37) (a) Yin, J.; Zhao, M. M.; Huffman, M. A.; McNamara, J. M. Org.
Lett. 2002, 4, 3481. (b) Iwaki, T.; Yasuhara, A.; Sakamoto, T. J. Chem.
Soc. Perkin Trans. 1 1999, 1505.
(38) (a) Wagaw, S.; Buchwald, S. L. J. Org. Chem. 1996, 61, 7240. (b)
Billingsley, K. L.; Anderson, K. W.; Buchwald, S. L. Angew. Chem., Int.
Ed. 2006, 45, 3484.
(26) Cacchi, S.; Fabrizi, G.; Parisi, L. M. J. Comb. Chem. 2005, 7, 510.
(27) Zhang, X.; Kerr, M. A. Org. Lett. 2006, 8, 3777.
(28) Willis, M. C.; Brace, G. N.; Holmes, I. P. Angew. Chem., Int. Ed.
2005, 44, 403.
(39) (a) Widenhoefer, R. A.; Buchwald, S. L. Organometallics 1996,
15, 3534. (b) Wolfe, J. P.; Wagaw, S.; Buchwald, S. L. J. Am. Chem. Soc.
1996, 118, 7215. (c) Wolfe, J. P.; Wagaw, S.; Marcoux, J.-F.; Buchwald,
S. L. Acc. Chem. Res. 1998, 31, 805.
J. Org. Chem, Vol. 72, No. 14, 2007 5153