Edge Article
Chemical Science
the Comunidad de Madrid (MADRISOLAR-2, S2009/PPQ/1533),
the EU (FP7- ICT-2011.3.6, Nr: 287818), Fonds der Chemischen
Industrie (FCI) and Deutsche Forschungsgemeinscha (SFB
583), and Free State of Bavaria (Solar Technologies go Hybrid).
Conclusions
A systematic and quantitative study of the supramolecular
interaction of SubPcs withfullerenes insolution hasbeen carried
out. Systematic variations of the peripheral substitution of
SubPcs assist in the control over the non-covalent forces at work.
To this end, hydrophobic interactions complemented by p–p
interactions are the major driving forces behind a 2 : 1
complexation between two hexaalkylthioSubPcs and one C60
(or C70), with binding constants as large as 105 Mꢀ1. In the
resulting 2 : 1 inclusion complexes, an unidirectional energy
transfer from the periphery (i.e., two SubPcs) to the core (i.e., C60
and C70) has been determined to occur upon photoexcitation. At
the current stage of our research, it is hard to make serious
predictions about the applicability of our binding motif towards
improving organic photovoltaics. Despite the lack of electron
transfer in our solution based experiments, such events are,
nevertheless, expected in organic photovoltaic devices. On this
connection, we like to draw attention to previous results with
acceptor peruorinated SubPcs.9b Moreover, deaggregation of
fullerenes by the chromophore might be a useful approach for
achieving better architectures in bulk-heterojunction solar cells.
Notes and references
1 (a) Fullerenes, ed. A. Hirsch and M. Brettreich, Wiley-VCH
Verlag GmbH
&
Co. KGaA, Weinheim, 2005; (b)
S. Fukuzumi and D. M. Guldi, Electron-Transfer Chemistry
of Fullerenes, in Electron Transfer in Chemistry, ed. V.
Balzani, Wiley-VCH Verlag GmbH, Weinheim, 2008; (c)
R. Taylor and D. R. M. Walton, Nature, 1993, 363, 685–693;
(d) M. Prato, J. Mater. Chem., 1997, 7, 1097–1109; (e)
G. Bottari, G. de la Torre, D. M. Guldi and T. Torres, Chem.
Rev., 2010, 110, 6768–6816.
2 (a) K. Tashiro, T. Aida, J.-Y. Zheng, K. Kinbara, K. Saigo,
S. Sakamoto and K. Yamaguchi, J. Am. Chem. Soc., 1999,
121, 9477–9478; (b) K. Tashiro and T. Aida, Chem. Soc. Rev.,
2007, 36, 189–197; (c) A. M. V. M. Pereira, A. R. M. Soares,
´
A. Hausmann, M. G. P. M. S. Neves, A. C. Tome,
A. M. S. Silva, J. A. S. Cavaleiro, D. M. Guldi and T. Torres,
Phys. Chem. Chem. Phys., 2011, 13, 11858–11863; (d)
H. Imahori and Y. Sakata, Adv. Mater., 1997, 9, 537–546; (e)
P. D. W. Boyd and C. A. Reed, Acc. Chem. Res., 2005, 38,
235–242.
Experimental
Synthesis
General method for the synthesis of 4,5-dialkylthiophthaloni-
triles:12 4,5-dichlorophthalonitrile (1 g, 5.08 mmol), K2CO3
(2.1 g, 15.24 mmol) and degassed N,N-dimethylacetamide
(13 ml) were placed in a round bottomed ask under argon
atmosphere. The corresponding thiol (12 mmol) was added and
´
´
3 (a) E. M. Perez and N. Martın, Chem. Soc. Rev., 2008, 37,
1512–1519; (b) A. Sygula, F. R. Fronczek, R. Sygula,
P. W. Rabideau and M. M. Olmstead, J. Am. Chem. Soc.,
2007, 129, 3842–3843; (c) T. Kawase and H. Kurata, Chem.
Rev., 2006, 106, 5250–5273; (d) M. B. Nielsen and
F. Diederich, Chem. Rev., 2005, 105, 1837–1867, and
ꢃ
the mixture was stirred at 90 C for 12 h. Characteristics of 2c
and d are identical to those previously described.
´
´
references therein; (e) E. M. Perez, L. Sanchez,
Generalmethodforthesynthesisofsubphthalocyanines1–6b:
in a 25 ml round bottomed ask, BCl3 (0.3 mmol, 1 M solution in
p-xylene) was added to the corresponding phthalonitrile (0.6
mmol) under an argon atmosphere. The reaction mixture was
stirred under reux for 2 h and then ushed with argon to remove
volatiles. Subsequent axial substitution was carried out without
isolation of chlorosubphthalocyanines intermediate. 4-tert-
buthylphenol (1.8 mmol) and toluene (1 ml) were added and the
mixture was reuxed till reaction was completed (check by TLC;
see eluent below). Reaction was cooled down to room tempera-
ture, the solvent was evaporated under reduced pressure and the
resulting purple-green solid was washed with a 4 : 1 mixture of
methanol and water. Finally, compounds 1–6b were puried by
column chromatography in silica gel using as eluent: hexane–
toluene (1 : 2.5) for 3 and 4b, hexane–CH2Cl2 (1 : 1) for 5b,
hexane–ethyl acetate (20 : 1) for 6b, toluene–THF (20 : 1) for 2b
and hexane–CHCl3 (2 : 1) for 1b. Characteristics of compounds
1c–f are identical to those previously described.12b,13
´
´
G. Fernandez and N. Martın, J. Am. Chem. Soc., 2006, 128,
7172–7173; (f) T. Andersson, K. Nilsson, M. Sundahl,
G. Westman and O. J. Wennerstrom, J. Chem. Soc., Chem.
Commun., 1992, 604–606; (g) K. Tashiro and T. Aida, Chem.
Soc. Rev., 2007, 36, 189–197.
¨
´
´
4 (a) C. G. Claessens, D. Gonzalez-Rodrıguez and T. Torres,
Chem. Rev., 2002, 102, 835–853; (b) A. Medina and
C. G. Claessens, J. Porphyrins Phthalocyanines, 2009, 13,
447–454; (c) T. Torres, Angew. Chem., Int. Ed., 2006, 45,
2834–2837; (d) N. Kobayashi, T. Ishizaki, K. Ishii and
H. Konami, J. Am. Chem. Soc., 1999, 121, 9096–9110.
5 R. Ziessel, G. Ulrich, K. J. Elliott and A. Harriman, Chem.–Eur.
J., 2009, 15, 4980–4984.
6 S. Shimizu, S. Nakano, T. Hosoya and N. Kobayashi, Chem.
Commun., 2011, 47, 316–318.
7 C. G. Claessens and T. Torres, Chem. Commun., 2004, 1298–
1299.
´
´
8 (a) D. Gonzalez-Rodrıguez, T. Torres, D. M. Guldi, J. Rivera,
M. A. Herranz and L. Echegoyen, J. Am. Chem. Soc., 2004,
´
´
126, 6301–6313; (b) D. Gonzalez-Rodrıguez, E. Carbonell,
G. de Miguel Rojas, C. Atienza Castellanos, D. M. Guldi
and T. Torres, J. Am. Chem. Soc., 2010, 126, 6301–6313; (c)
Acknowledgements
Support is acknowledged from the Spanish MEC (CTQ2011-
24187/BQU and CONSOLIDER INGENIO 2010, CSD2007-00010
on Molecular Nanoscience), MICINN (PRI-PIBUS-2011-1128),
´
´
D. Gonzalez-Rodrıguez, E. Carbonell, D. M. Guldi and
T. Torres, Angew. Chem., Int. Ed., 2009, 48, 8032–8036.
This journal is ª The Royal Society of Chemistry 2013
Chem. Sci., 2013, 4, 1338–1344 | 1343