2 (a) K. Kindler and F. Hesse, Arch. Pharm., 1933, 271, 439;
(b) H. Greenfield, Ind. Eng. Chem. Prod. Res. Dev., 1967, 6, 142;
(c) J. Volf and J. Pasek, Stud. Surf. Sci. Catal., vol. 27 (Catalytic
Hydrogenation, Ed.: L. Cerveny), Elsevier, Amsterdam, 1986, pp. 105;
(d) R. A. Grey, G. P. Pez and A. Wallo, J. Am. Chem. Soc., 1981,
103, 7536; (e) T. Suarez and B. Fontal, J. Mol. Catal., 1988, 45, 335;
(f) T. Arliguie, B. Chaudret, R. H. Morris and A. Sella, Inorg. Chem.,
1988, 27, 598; (g) A. F. Borowski, S. Sabo-Etienne, M. L. Christ,
B. Donnadieu and B. Chaudret, Organometallics, 1996, 15, 1427;
(h) S. Takemoto, H. Kawamura, Y. Yamada, T. Okada, A. Ono,
E. Yoshikawa, Y. Mizobe and M. Hidai, Organometallics, 2002,
21, 3897; (i) S. Gomez, J. A. Peters and T. Maschmeyer, Adv. Synth.
Catal., 2002, 344, 1037; (j) H. U. Blaser, C. Malan, B. Pugin,
F. Spindler, H. Steiner and M. Studer, Adv. Synth. Catal., 2003,
345, 103; (k) P. Kukula, M. Studer and H. U. Blaser, Adv. Synth.
Catal., 2004, 346, 1487.
3 (a) P. Rylander, CataIytic Hydrogenation in Organic Syntheses,
Academic, New York, 1979, ch. 8; (b) M. Freifelder, Catalytic
Hydrogenation in Organic Synthesis. Procedures and Commentary,
Wiley-Interscience, New York, 1978, ch. 6.
4 (a) T. Yoshida, T. Okano and S. Otsuka, J. Chem. Soc., Chem.
Commun., 1979, 870; (b) T. Li, I. Bergner, F. Nipa Haque,
M. Zimmer-De Iuliis, D. Song and R. H. Morris, Organometallics,
2007, 26, 5940; (c) S. Enthaler, D. Addis, K. Junge, G. Erre and
M. Beller, Chem.–Eur. J., 2008, 14, 9491; (d) R. Reguillo,
M. Grellier, N. Vautravers, L. Vendier and S. Sabo-Etienne,
J. Am. Chem. Soc., 2010, 132, 7854; (e) M. Chatterjee,
H. Kawanami, M. Sato, T. Ishizaka, T. Yokoyama and
T. Suzuki, Green Chem., 2010, 12, 87; (f) C. Gunanathan,
Scheme 3 Possible mechanism for cross coupling between nitriles
and amines under mild H2 pressure catalyzed by complex 1.
This may be due to the chelating nature of 2-iminopyridine
which might deactivate the catalyst.
Reaction of cyclohexylamine with benzonitrile led to 80%
yield of N-benzylidenecyclohexanamine (entry 13) and 18%
yield of N-benzylidene-1-phenylmethanamine as self-coupled
products. The reaction of the alkyl nitriles isobutyronitrile or
valeronitrile with hexylamine gave N-(2-methylpropylidene)-
hexan-1-amine and N-pentylidenehexan-1-amine in 74% and
68% yields, respectively (entries 14 and 15). As an example of
an intramolecular coupling reaction, we examined the reaction
of 2-aminobenzyl cyanide at 0.8 mol% catalyst loading, leading
to indole which was isolated after column (neutral alumina)
chromatography in 30% yield (entry 16).
¨
M. Holscher and W. Leitner, Eur. J. Inorg. Chem., 2011, 3381;
(g) S. Enthaler, K. Junge, D. Addis, G. Erre and M. Beller,
ChemSusChem, 2008, 1, 1006; (h) D. Addis, S. Enthaler, K. Junge,
B. Wendt and M. Beller, Tetrahedron Lett., 2009, 50, 3654.
5 (a) D. K. Mukherjee, B. K. Palit and C. R. Saha, J. Mol. Catal. A:
Chem., 1994, 88, 57; (b) C. S. Chin and B. Lee, Catal. Lett., 1992,
14, 135; (c) A. Galan, J. de Mendoza, P. Prados, J. Rojo and
A. M. Echavarren, J. Org. Chem., 1991, 56, 452; (d) K. Rajesh,
B. Dudle, O. Blacque and H. Berke, Adv. Synth. Catal., 2011, 353, 1479.
6 (a) M. K. S. Vink, C. A. Schortinghuis, A. Mackova-Zabelinskaja,
M. Fechter, P. Pochlauer, A. Marianne, C. F. Castelijns, J. H. van
¨
Maarseveen, H. Hiemstra, H. Griengl, H. E. Schoemaker and F. P. J.
T. Rutjes, Adv. Synth. Catal., 2003, 345, 483; (b) H. Sajiki, T. Ikawa
and K. Hirota, Org. Lett., 2004, 6, 4977; (c) C. R. Reddy, K. Vijeender,
P. B. Bhusan, P. P. Madhavi and S. Chandrasekhar, Tetrahedron Lett.,
2007, 48, 2765; (d) T. Ikawa, Y. Fujita, T. Mizusaki, S. Betsuin,
H. Takamatsu, T. Maegawa, Y. Monguchi and H. Sajiki, Org. Biomol.
Chem., 2012, 10, 293; (e) J. Shares, J. Yehl, A. Kowalsick, P. Byers and
M. P. Haaf, Tetrahedron Lett., 2012, 53, 4426.
7 (a) J. P. Adams, J. Chem. Soc., Perkin Trans. 1, 2000, 125; (b) J.
Gawronski, N. Wascinska and J. Gajewy, Chem. Rev., 2008, 108, 5227.
8 (a) J. Zhang, G. Leitus, Y. Ben-David and D. Milstein, J. Am.
Chem. Soc., 2005, 127, 10840; (b) J. Zhang, G. Leitus, Y. Ben-David
and D. Milstein, Angew. Chem., Int. Ed., 2006, 45, 1113;
(c) C. Gunanathan, Y. Ben-David and D. Milstein, Science, 2007,
317, 790; (d) L. Schwartsburd, M. A. Iron, Y. Konstantinovski,
Y. Diskin-Posner, G. Leitus, L. J. W. Shimon and D. Milstein,
Organometallics, 2010, 29, 3817; (e) D. Milstein, Top. Catal., 2010,
53, 915; (f) B. Gnanaprakasam, Y. Ben-David and D. Milstein, Adv.
Synth. Catal., 2010, 352, 3169; (g) C. Gunanathan and D. Milstein,
Acc. Chem. Res., 2011, 44, 588; (h) B. Gnanaprakasam, J. Zhang
and D. Milstein, Angew. Chem., Int. Ed., 2010, 49, 1468;
(i) B. Gnanaprakasam, E. Balaraman, Y. Ben-David and
D. Milstein, Angew. Chem., Int. Ed., 2011, 50, 12240.
The mechanism illustrated in Scheme 3 might be possible,
although other mechanisms cannot be excluded at this stage.
Initially, coordination of the nitrile to the unsaturated
complex 1 gives rise to the coordinatively saturated complex
A which can undergo de-coordination of the bipyridine ‘‘arm’’
followed by addition of dihydrogen by metal–ligand cooperation
to generate complex B. Subsequent hydride transfer to the
nitrile group leads to the imine intermediate C. Nucleophilic attack
by the amine on the coordinated imine can give intermediate D,
which liberates a diamine with regeneration of the catalyst. NH3
liberation from the diamine gives rise to the desired imine.
In conclusion, for the first time imines can be selectively formed
by hydrogenative coupling of nitriles and amines. The reaction
proceeds at relatively low temperature and under neutral, homo-
geneous conditions using the pincer catalyst 1, under mild hydrogen
pressure. This new, environmentally benign atom economical
catalytic protocol exhibits a broad substrate scope, providing a
variety of imines from amines and nitriles in good to excellent yields.
This research was supported by the European Research
Council under the FP7 framework (ERC No. 246837) and
by the Kimmel Center for Molecular Design. D. M. holds the
Israel Matz Professorial Chair of Organic Chemistry.
9 (a) C. Gunanathan, L. J. W. Shimon and D. Milstein, J. Am.
Chem. Soc., 2009, 131, 3146; (b) C. Gunanathan and D. Milstein,
Angew. Chem., Int. Ed., 2008, 47, 8661; (c) C. Gunanathan,
B. Gnanaprakasam, M. A. Iron, L. J. W. Shimon and
D. Milstein, J. Am. Chem. Soc., 2010, 132, 14763.
10 E. Balaraman, B. Gnanaprakasam, L. J. W. Shimon and
D. Milstein, J. Am. Chem. Soc., 2010, 132, 16756.
11 (a) E. Balaraman, Y. Ben-David and D. Milstein, Angew. Chem.,
Int. Ed., 2011, 50, 11702; (b) E. Balaraman, C. Gunanathan,
J. Zhang, L. J. W. Shimon and D. Milstein, Nat. Chem., 2011,
3, 609; (c) E. Balaraman, E. Fogler and D. Milstein, Chem.
Commun., 2012, 48, 1111.
Notes and references
1 L. A. Oro, D. Carmona and J. M. Fraile, in Metal-Catalysis in
Industrial Organic Processes, ed. G. P. Chiusoli and P. M. Maitlis,
RSC Publishing London, 2006, pp. 79–113.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 11853–11855 11855