Letters
Journal of Medicinal Chemistry, 2007, Vol. 50, No. 15 3433
V.; Sherman, M.; Younkin, L.; Younkin, S.; Forster, C.; Sergeant,
N.; Delacourte, A.; Vassar, R.; Citron, M.; Kofuji, P.; Boland, L.
M.; Ashe, K. H. Involvement of b-site APP cleaving enzyme 1
(BACE1) in amyloid precursor protein-mediated enhancement of
memory and activity-dependent synaptic plasticity. Proc. Natl. Acad.
Sci. U.S.A. 2007, 104, 8167-8172.
µM. The challenge remains to find molecules that combine the
reasonable pk parameters of 8e, with the potency/efficacy of 4.
AD remains one of the more substantial unmet medical needs.
Small molecule interference in the amyloid cascade represents
an attractive therapeutic option. â-Secretase is a particularly
appealing target with knock-out mice demonstrating Aâ reduc-
tion and a relatively normal phenotype.5 The challenges sur-
rounding â-secretase inhibitor design are substantial and are
highlighted by the difficulty in uncovering small molecules that
maintain potency while demonstrating desirable penetration
across the blood-brain barrier. Starting from compounds
containing a known aspartyl protease transition state isostere,
isonicotinamide-based inhibitors were discovered that allowed
for truncation of the HEA isostere to a simple amine. Optimiza-
tion for potency and brain penetration led to 4, a low nanomolar
BACE-1 inhibitor that was effective in reducing Aâ levels in a
murine model in a dose-dependent manner. Issues that remain
to be resolved are Pgp-mediated efflux and poor pharmacoki-
netics. Efforts are currently under way to address these liabilities
and will be the subject of future communications.
(6) (a) Coburn, C. A.; Stachel, S. J.; Li, Y.-M.; Rush, D. M.; Steele, T.
G.; Chen-Dodson, E.; Holloway, M. K.; Xu, M.; Huang, Q.; Lai,
M.-T.; DiMuzio, J.; Crouthamel, M.-C.; Shi, X.-P.; Sardana, V.;
Chen, Z.; Munshi, S.; Kuo, L.; Makara, G. M.; Annis, D. A.;
Tadikonda, P. K.; Nash, H. M.; Vacca, J. P.; Wang, T. Identification
of a small molecule nonpeptide active site â-secretase inhibitor that
displays a nontraditional binding mode for aspartyl proteases. J. Med.
Chem. 2004, 47, 6117-6119. (b) Stachel, S. J.; Coburn, C. A.; Steele,
T. G.; Jones, K. G.; Loutzenhiser, E. F.; Gregro, A. R.; Rajapakse,
H. A.; Lai, M.-T.; Crouthamel, M.-C.; Xu, M.; Tugusheva, K.;
Lineberger, J. E.; Pietrak, B. L.; Espeseth, A. S.; Shi, X.-P.; Chen-
Dodson, E.; Holloway, M. K.; Munshi, S.; Simon, A. J.; Kuo, L.;
Vacca, J. P. Structure-based design of potent and selective cell-
permeable inhibitors of human â-secretase (BACE-1). J. Med. Chem.
2004, 47, 6447-6450. For representative examples of HEA BACE
inhibitors from other laboratories, see: Maillard, M. C.; Hom, R.
K.; Benson, T. E.; Moon, J. B.; Mamo, S.; Bienkowski, M.;
Tomasselli, A. G.; Woods, D. D.; Prince, D. B.; Paddock, D. J.;
Emmons, T. L.; Tucker, J. A.; Dappen, M. S.; Brogley, L.; Thorsett,
E. D.; Jewett, N.; Sinha, S.; John, V. Design, synthesis, and crystal
structure of hydroxyethyl secondary amine-based peptidomimetic
inhibitors of human beta-secretase. J. Med. Chem. 2007, 50, 776-
781. Also see: Hussain, I.; Hawkins, J.; Harrison, D.; Hille, C.;
Wayne, G.; Cutler, L.; Buck, T.; Walter, D.; Demont, E.; Howes,
C.; Naylor, A.; Jeffrey, P.; Gonzalez, M.; Dingwall, C.; Michel, A.;
Redshaw, S.; Davis, J. B. Oral administration of a potent and selective
non-peptidic BACE-1 inhibitor decreases beta-cleavage of amyloid
precursor protein and amyloid-beta production in vivo. J. Neurochem.
2007, 100, 802-809 and references therein.
Supporting Information Available: Experimental procedures
and compound characterization data. This material is available free
References
(1) Cummings, J. L. Alzheimer’s disease. N. Engl. J. Med. 2004, 351,
56-67.
(2) Sinha, S.; Lieberburg, I. Cellular mechanisms of â-amyloid production
and secretion. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 11049-11053.
(3) Beher, D.; Graham, S. L. Protease inhibitors as potential disease-
modifying therapeutics for Alzheimer’s disease. Expert Opin. InVest.
Drugs 2005, 14, 1385-1409.
(7) Didziapetris, R.; Japertas, P.; Avdeef, A.; Petrauskas, A. Classification
analysis of P-gylcoprotein substrate specificity. J. Drug Target 2003,
11, 391-406.
(4) (a) Vassar, R.; Bennett, B. D.; Babu-Kahn, S.; Kahn, S.; Mendiaz,
E. A.; Denis, P.; Teplow, D. B.; Ross, S.; Amarante, P.; Loeloff, R.;
Luo, Y.; Fisher, S.; Fuller, J.; Edendon, S.; Lile, J.; Jarosinski, M.
A.; Biere, A. L.; Curran, E.; Burgess, T.; Louis, J. C.; Collins, F.;
Treanor, J.; Rogers, G.; Citron, M. â-Secretase cleavage of Alzhe-
imer’s amyloid precursor protein by the transmembrane aspartic
protease BACE. Science 1999, 286, 735. (b) Sinha, S.; Anderson, J.
P.; Barbour, R.; Basi, G. S.; Caccavello, R.; Davis, D.; Doan, M.;
Dovey, H. F.; Frigon, N.; Hong, J.; Jacobson-Croak, K.; Jewett, N.;
Keim, P.; Knops, J.; Leiberburg, I.; Power, M.; Tan, H.; Tatsuno,
G.; Tung, J.; Schenk, D.; Seubert, P.; Suomensaari, S. M.; Wang,
S.; Walker, D.; John, V. Purification and cloning of amyloid precursor
protein â-secretase from human brain. Nature 1999, 402, 537-540.
(c) Yan, R.; Bienkowski, M. J.; Shuck, M. E.; Miao, H.; Tory, M.
C.; Pauley, A. M.; Brashler, J. R.; Stratman, N. C.; Mathews, W.
R.; Buhl, A. E.; Carter, D. B.; Tomasselli, A. G.; Parodi, L. A.;
Heinrikson, R. L.; Gurney, M. E. Membrane-anchored aspartyl
protease with Alzheimer’s disease â-secretase activity. Nature 1999,
402, 533. (d) Hussain, I.; Powell, D.; Howlett, D. R.; Tew, D. G.;
Meek, T. D.; Chapman, C.; Gloger, I. S.; Murphy, K. E.; Southan,
C. D.; Ryan, D. M.; Smith, T. S.; Simmons, D. L.; Walsh, F. S.;
Dingwall, C.; Christie, G. Identification of a novel aspartic protease
(Asp 2) as â-secretase Mol. Cell. Neurosci. 1999, 14, 419-427.
(5) (a) Cai, H.; Wang, Y.; McCarthy, D.; Wen, H.; Borchelt, D. R.; Price,
D. L.; Wong, P. C. BACE1 is the major beta-secretase for generation
of Abeta peptides by neurons. Nat. Neurosci. 2001, 4, 233-234. (b)
Roberts, S. L.; Anderson, J.; Basi, G.; Bienkowski, M. J.; Branstetter,
D. G.; Chen, K. S.; Freedman, S.; Frigon, N. L.; Games, D.; Hu, K.;
Johnson-Wood, K.; Kappenman, K. E.; Kawabe, T.; Kola, I.; Kuehn,
R.; Lee, M.; Liu, W.; Motter, R.; Nichols, N. F.; Power, M.;
Robertson, D. W.; Schenk, D.; Schoor, M.; Shopp, G. M.; Shuck,
M. E.; Sinha, S.; Svensson, K. A.; Tatsuno, G.; Tintrup, H.; Wijsman,
J.; Wright, S.; McConlogue, L. BACE knockout mice are healthy
despite lacking the primary â-secretase activity in the brain. Hum.
Mol. Genet. 2001, 10, 1317-1324. (c) Recent reports demonstrate
hypomyelination of peripheral nerves in BACE1-/- mice. It remains
to be seen if these results are recapitulated in conditional k/o mice
or by pharmacological inhibition. Willem, M.; Garratt, A. N.; Novak,
B.; Citron, M.; Kaufmann, S.; Rittger, A.; DeStrooper, B.; Saftig,
P.; Birchmeier, C.; Haass, C. Control of peripheral nerve myelination
by the beta-secretase BACE1. Science 2006, 314, 664-666. (d) For,
a recent report on the role of BACE1 in memory and synaptic
plasticity, see: Ma, H.; Lesne, S.; Kotilinek, L.; Steidl-Nichols, J.
(8) (a) Stachel, S. J.; Coburn, C. A.; Steele, T. G.; Crouthamel, M.-C.;
Pietrak, B. L.; Lai, M.-T.; Holloway, M. K.; Munshi, S. K.; Graham,
S. L.; Vacca, J. P. Conformationally biased P3 amide replacements
of â-secretase inhibitors. Bioorg. Med. Chem. Lett. 2006, 16, 641-
644. (b) Stauffer, S. R.; Stanton, M. G.; Gregro, A. R.; Steinbeiser,
M. A.; Shaffer, J. R.; Nantermet, P. G.; Barrow, J. C.; Rittle, K. E.;
Collusi, D.; Espeseth, A. S.; Lai, M.-T.; Pietrak, B. L.; Holloway,
M. K.; McGaughey, G. B.; Munshi, S. K.; Selnick, H. G.; Simon,
A. J.; Graham, S. L.; Vacca, J. P. Discovery and SAR of isonicoti-
namide BACE-1 inhibitors which bind â-secretase in a N-terminal
10s-loop down conformation. Bioorg. Med. Chem. Lett. 2007, 17,
1788-1792. (c) Yang, W.; Lu, W.; Lu, Y.; Zhong, M.; Sun, J.;
Thomas, A. E.; Wilkinson, J. M.; Fucini, R. V.; Lam, M.; Randal,
M.; Shi, X.-P.; Jacobs, J. W.; McDowell, R. S.; Gordon, E. M.;
Ballinger, M. D. Aminoethylenes: A tetrahedral intermediate isostere
yielding potent inhibitors of the aspartyl protease BACE-1. J. Med.
Chem. 2006, 49, 839-842.
(9) (a) Yin, J.; Buchwald, S. L. Palladium-catalyzed intermolecular
coupling of aryl halides and amides. Org. Lett. 2000, 2, 1101-1104.
(b) Yin, J.; Buchwald, S. L. Pd-catalyzed intermolecular amidation
of aryl halides: The discovery that xantphos can be trans-chelating
in a palladium complex. J. Am. Chem. Soc. 2002, 124, 6043-6048.
(c) Steinhuebel, D.; Palucki, M.; Askin, D.; Dolling, U. Synthesis of
N-arylated sultams: Palladium- and copper-catalyzed cross coupling
of aryl halides with 1,4-butane and 1,3-propanesultams. Tetrahedron
Lett. 2004, 45, 3305-3307.
(10) Stauffer, S. R.; Steinbeiser, M. A. Pd-catalyzed amination in a polar
medium: rate enhancement, convenient product isolation, and tandem
Suzuki cross coupling. Tetrahedron Lett. 2005, 46, 2571-2575.
(11) Lamb, B. T.; Sisodia, S. S.; Lawler, A. M.; Slunt, H. H.; Kitt, C. A.;
Kearns, W. G.; Pearson, P. L.; Price, D. L.; Gearhart, J. D.
Introduction and expression of the 400 kilobase amyloid precursor
protein gene in transgenic mice. Nat. Genet. 1993, 5, 22-30.
(12) Three out of 33 mice did not survive at the highest dose (50 mg/kg)
of 4 for the two studies in Figures 2 and 3 (compared to 0 deaths in
16 control animals). No deaths occurred in the lower doses of 4.
JM070272D