U.P. Singh et al. / Inorganica Chimica Acta 360 (2007) 3226–3232
[2] M. Kobayashi, S. Shimizu, Eur. J. Biochem. 261 (1999) 1.
3231
4. Conclusion
[3] W.T. Lowther, D.A. McMillen, A.M. Orville, B.W. Matthews, Proc.
Natl. Acad. Sci. USA 95 (1998) 12153.
[TpiPr2Co(OBz)(CH3CN)] complex 3 was obtained by
the reaction of [TpiPr2Co(NO3)] (2) and sodium benzoate.
The X-ray studies demonstrated the presence of six coordi-
nated metal center in complex 3 due to the coordination of
acetonitrile at vacant 6th position of the cobalt center. On
the other hand, the reaction of 2 with sodium fluoroben-
zoate gave five coordinate complex 4 which is coordin-
atively unsaturate with three nitrogen atoms from TpiPr2
ligand and two oxygen atoms from fluorobenzoate. Com-
plex 4 was oxidized with 30% H2O2 in the presence of free
pyrazole. The oxidized product 5 has a unique structure. In
complex 5, the cobalt is still in two oxidation state, one of
the six methine carbon atoms in the isopropyl groups of
TpiPr2 ligand is oxygenated and form bond with cobalt cen-
ter. The coordination behavior of fluorobenzoate is chan-
ged from bidentate to monodentate. The one oxygen
atom of monodentately coordinated fluorobenzote forms
intramolecluar hydrogen bond with NH fragment of the
coordinated 3; 5-Pri2pzH giving six coordination number
to the cobalt center. The formation of pyrazolato bridged
binuclear cobalt(II) complex 6 indicated that the coordi-
nated 3,5-diisopropylpyrazole molecule can behave in both
protonated as well as deprotonated form in same com-
pound. In complex 6, the deprotonated 3; 5-Pri2pzH bridges
between two cobalt centers and protonated 3; 5-Pri2pzH
form intramolecular hydrogen bonds. This may help in
understanding the mechanism of the action of metallo-
enzymes, where the imidazole fragment of the terminal
histidine molecule is present in their active site [31] and
the binuclear metal carboxylate complexes serve as models
[32].
[4] P.K. Mascharak, J.C. Noveron, M.M. Olmstead, J. Inorg. Biochem.
74 (1999) 224.
[5] M. Dennis, P.E. Kolattukudy, Proc. Natl. Acad. Sci. USA 89 (1992)
5306.
[6] N. Itoh, N. Morinaga, T. Kouzai, Biochem. Biophys. Acta 1207
(1994) 208.
[7] (a) B.A. Arndtsen, R.G. Bergman, T.A. Mobley, T.H. Peterson, Acc.
Chem. Res. 28 (1995) 154;
(b) Special thematic issue on ‘‘Metal–Dioxygen Complexes’’, Chem.
Rev. 94 (1994) 567;
(c) Special thematic issue on ‘‘Bioinorganic Enzymology’’, Chem.
Rev. 96 (1996) 2237.
[8] (a) W.B. Tolman, Acc. Chem. Res. 30 (1997) 227;
(b) S. Mahapatra, J.A. Halfen, E.C. Wilkinson, G. Pan, X. Wang,
V.G. Young Jr., C.J. Cramer, L. Que Jr., W.B. Tolman, J. Am.
Chem. Soc. 118 (1996) 11555;
(c) S. Mahapatra, J.A. Halfen, W.B. Tolman, J. Am. Chem. Soc. 118
(1996) 11575;
(d) S. Mahapatra, V.G. Young Jr., S. Kaderli, A.D. Zuberbuhler,
W.B. Tolman, Angew. Chem., Int. Ed. Engl. 36 (1997) 130;
(e) S. Mahapatra, S. Kaderli, A. Llobet, Y.-M. Neuhold, T. Palanche,
J.A. Halfen, V.G. Young Jr., T.A. Kaden, L. Que Jr., A.D.
Zuberbuhler, W.B. Tolman, Inorg. Chem. 36 (1997) 6343;
(f) A.P. Cole, D.E. Root, P. Mukherjee, E.I. Solomon, T.D.P. Stack,
Science 273 (1996) 1848;
(g) J.L. DuBois, P. Mukherjee, A.M. Collier, J.M. Mayer, E.I.
Solomon, B. Hedman, T.D.P. Stack, K.O. Hodgson, J. Am. Chem.
Soc. 119 (1997) 8578;
(h) V. Mahadevan, Z. Hou, A.P. Cole, D.E. Root, T.K. Lal, E.I.
Solomon, T.D.P. Stack, J. Am. Chem. Soc. 119 (1997) 11996;
(i) S. Itoh, H. Nakao, L.M. Berreau, T. Kondo, M. Komatsu, S.
Fukuzumi, J. Am. Chem. Soc. 120 (1998) 2890.
[9] (a) L. Que Jr., Y. Dong, Acc. Chem. Res. 29 (1996) 190;
(b) L. Que Jr., J. Chem. Soc., Dalton Trans. (1997) 3933;
(c) C. Kim, Y. Dong, L. Que Jr., J. Am. Chem. Soc. 119 (1997) 3635;
(d) E.C. Wilkinson, Y. Dong, Y. Zang, H. Fujii, R. Fraczkiewicz, G.
Fraczkiewicz, R.S. Czernuszewicz, L. Que Jr., J. Am. Chem. Soc. 120
(1998) 955.
5. Supplementary material
[10] (a) B.J. Wallar, J.D. Lipscomb, Chem. Rev. 96 (1996) 2625;
(b) A.M. Valentine, S.J. Lippard, J. Chem. Soc., Dalton Trans. (1997)
3925;
CCDC 637433, 637434, 637435, and 637436 contain the
supplementary crystallographic data for this paper. The
Crystallographic Data Centre, 12 Union Road, Cambridge
CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail:
(c) L. Shu, J.C. Nesheim, K. Kauffmann, E. Munck, J.D. Lipscomb,
L. Que Jr., Science 275 (1997) 515;
(d) D. Burdi, B.E. Sturgeon, W.H. Tong, J. Stubbe, B.M. Hoffman, J.
Am. Chem. Soc. 118 (1996) 281.
[11] S. Hikichi, H. Komatsuzaki, N. Kitajima, M. Akita, M. Mukai, T.
Kitagawa, Y. Moro-oka, Inorg. Chem. 36 (1997) 266.
[12] S. Hikichi, H. Komatsuzaki, M. Akita, Y. Moro-oka, J. Am. Chem.
Soc. 120 (1998) 4699.
[13] N. Kitajima, M. Osawa, M. Tanaka, Y. Moro-oka, J. Am. Chem.
Soc. 113 (1991) 8952.
Acknowledgments
[14] S. Mahapatra, J.A. Halfen, W.B. Tolman, J. Am. Chem. Soc. 118
(1996) 11575.
[15] (a) V.W. Day, W.G. Klemperer, S.P. Lockledge, D.J. Main, J. Am.
Chem. Soc. 112 (1990) 2031;
This research was supported by the CSIR, New Delhi,
India. The authors are grateful to Dr. Thomas Weyher-
mueller Max-Planck-Institut fuer Bioanorganische
Chemie, Muelheim, Germany and Head, Institute Instru-
mentation Center, Indian Institute of Technology Roorkee
for X-ray measurements.
(b) I. Sanyal, M. Mahroof-Tahir, M.S. Nasir, P. Ghosh, B.I. Cohen,
Y. Gultneh, R.W. Cruse, A. Farooq, K.D. Karlin, S. Liu, J. Zubieta,
Inorg. Chem. 31 (1992) 4322;
(c) S. Itoh, T. Kondo, M. Komatsu, Y. Ohshiro, C. Li, N. Kanehisa,
Y. Kai, S. Fukuzumi, J. Am. Chem. Soc. 117 (1995) 4714;
(d) J.A. Halfen, V.G. Young Jr., W.B. Tolman, J. Am. Chem. Soc.
118 (1996) 10920;
References
(e) W.E. Allen, T.N. Sorrell, Inorg. Chem. 36 (1997) 1732.
[16] N. Kitajima, N. Tamura, M. Tanaka, Y. Moro-oka, Inorg. Chem. 31
(1992) 3342.
[1] S.J. Lippard, J.M. Berg, Principal of Bioinorganic Chemistry,
University Science Books, Mill Valley, CA, 1994.