LETTER
Total Syntheses of New Proansamitocin Derivatives by RCM
OSiC(CH3)3], 0.82 [s, 9 H, OSiC(CH3)3], 0.05 (s, 3 H,
1267
(7) Issell, B. F.; Crooke, S. T. Cancer Treat. Rev. 1978, 5, 199.
(8) (a) Chari, R. V.; Martell, B. A.; Gross, J. L.; Cook, S. B.;
Shah, S. A.; Blättler, W. A.; McKenzie, S. J.; Goldmacher,
V. S. Cancer Res. 1992, 52, 127. (b) Okamoto, K.; Harada,
K.; Ikeyama, S.; Iwasa, S. Jpn. J. Cancer Res. 1992, 83,
761. (c) Liu, C.; Tadayoni, B. M.; Bourret, L. A.; Mattocks,
K. M.; Derr, S. M.; Widdison, W. C.; Kedersha, N. L.;
Ariniello, P. D.; Goldmacher, V. S.; Lambert, J. M.; Blättler,
W. A.; Chari, R. V. J. Proc. Nat. Acad. Sci. U.S.A. 1996, 93,
8618.
(9) (a) These information were basically collected from
semisynthetic work starting with the natural products as
recently described by: Widdsion, W. C.; Wilhelm, S. D.;
Cavanagh, E. E.; Whiteman, K. R.; Leece, B. A.; Kovtun,
Y.; Goldmacher, V. S.; Xie, H.; Steeves, R. M.; Lutz, R. J.;
Zhao, R.; Wang, L.; Blättler, W. A.; Chari, R. V. J. J. Med.
Chem. 2006, 49, 4392; and in references 2a and 2e.
(b) Recent review of total synthesis approaches is given in
ref. 5b.
(10) Weist, S.; Süssmuth, R. D. Appl. Microbiol. Biotechnol.
2005, 68, 141.
(11) Frenzel, T.; Brünjes, M.; Quitschalle, M.; Kirschning, A.
Org. Lett. 2006, 8, 135.
(12) Kubota, T.; Brünjes, M.; Frenzel, T.; Xu, J.; Kirschning, A.;
Floss, H. G. ChemBioChem 2006, 7, 1221.
(13) Yu, T.-W.; Bai, L.; Clade, D.; Hoffmann, D.; Toelzer, S.;
Trinh, K. Q.; Xu, J.; Moss, S. J.; Leistner, E.; Floss, H. G.
Proc. Nat. Acad. Sci. U.S.A. 2002, 99, 7968.
OSiCH3), –0.02 (s, 3 H, OSiCH3), –0.03 (s, 3 H, OSiCH3),
–0.06 (s, 3 H, OSiCH3). 13C NMR (100 MHz, CDCl3 = 77.0
ppm): d = 206.8 (s, C-9), 169.1 (s, C-1), 155.9 (s, Ar),
141.7 (s, Ar), 138.7 (s, Ar), 136.8 (d, C-2¢), 136.5 (s, C-4),
135.5 (d, Ph), 132.9 (s, Ph), 132.4 (d, C-11), 129.8 (d, Ph),
128.3 (d, C-5), 127.7 (d, Ph), 120.3 (t, C-12), 115.9 (d,
Ar), 115.8 (t, C-3¢), 112.7 (d, Ar), 108.9 (d, Ar), 88.8 (d,
C-10), 75.2 (d, C-3), 71.4 (d, C-7), 57.0 (q, 10-OCH3), 46.1
(t, C-2), 43.4 (t, C-8), 39.9 (t, C-1¢), 38.2 (d, C-6), 26.5 [q,
OSi(Ph2)C(CH3)3], 26.0 {q, OSi[(CH3)2]C(CH3)3}, 25.8 {q,
OSi[(CH3)2]C(CH3)3}, 19.5 [s, OSi(Ph2)C(CH3)3], 18.1 {s,
OSi[(CH3)2]C(CH3)3}, 18.0 {s, OSi[(CH3)2]C(CH3)3}, 16.2
(q, 6-CH3), 12.5 (q, 4-CH3), –4.5 [q, 2 × OSiC(CH3)3], –4.7
[q, OSiC(CH3)3], –5.2 [q, OSiC(CH3)3]. HRMS (ESI): m/z
[M + H]+ calcd for C52H79Si3NO6: 898.5294; found:
898.5288. 19: [a]D20 –37.5 (c = 0.8, CHCl3). 1H NMR (400
MHz, CDCl3; CHCl3 = 7.26 ppm): d = 7.97 (s, 1 H, ArH),
7.77 (s, 1 H, NH), 5.99 (ddt, J = 6.1, 10.3, 16.7 Hz, 1 H, 2¢-
H), 5.68 (ddd, J = 6.9, 10.3, 17.2 Hz, 1 H, 11-H), 5.45 (ddd,
J = 1.3, 1.3, 17.2 Hz, 1 H, 12-H), 5.40–5.43 (m, 1 H, 5-H),
5.38 (ddd, J = 1.3, 1.3, 10.3 Hz, 1 H, 12-H¢), 5.00 (ddd, J =
1.6, 3.3, 10.3 Hz, 1 H, 3¢-H), 4.89 (dd, J = 1.6, 3.3, 16.7 Hz,
1 H, 3¢-H¢), 4.51 (dd, J = 3.8, 8.2 Hz, 1 H, 3-H), 4.07 (dt, J =
5.0, 6.6 Hz, 1 H, 7-H), 4.05 (ddd, J = 1.3, 1.3, 6.9 Hz, 1 H,
10-H), 3.83 (s, 3 H, ArOCH3), 3.78 (s, 3 H, ArOCH3), 3.69
(s, 3 H, ArOCH3), 3.42 (dd, J = 1.4, 6.0 Hz, 2 H, 1¢-H, 1¢-H¢),
3.34 (s, 3 H, 10-OCH3), 2.69 (dd, J = 6.6, 17.1 Hz, 1 H, 8-
H), 2.60 (dd, J = 4.8, 17.1 Hz, 1 H, 8-H¢), 2.50 (m, 1 H, 6-
H), 2.51 (dd, J = 3.8, 13.7 Hz, 1 H, 2-H), 2.44 (dd, J = 8.2,
13.7 Hz, 1 H, 2-H¢), 1.65 (d, J = 1.0 Hz, 3 H, 4-CH3), 0.85
(d, J = 4.4 Hz, 3 H, 6-CH3), 0.84 [s, 9 H, OSiC(CH3)3], 0.83
[s, 9 H, OSiC(CH3)3], 0.05 (s, 3 H, OSiCH3), 0.02 (s, 3 H,
OSiCH3), 0.01 (s, 3 H, OSiCH3), –0.03 (s, 3 H, OSiCH3). 13C
NMR (100 MHz, CDCl3 = 77.0 ppm): d = 206.8 (s, C-9),
169.1 (s, C-1), 149.1 (s, Ar), 143.3 (s, Ar), 140.8 (s, Ar),
137.1 (s, C-2¢), 136.4 (s, C-4), 132.4 (d, C-11), 128.4 (d, C-
5), 127.4 (s, Ar), 126.4 (s, Ar), 120.3 (t, C-12), 115.0 (t, C-
3¢), 103.4 (d, Ar), 88.9 (d, C-10), 75.4 (d, C-3), 71.4 (d, C-
7), 61.5 (q, ArOCH3), 60.9 (q, ArOCH3), 56.9 (q, 10-OCH3),
55.9 (q, ArOCH3), 46.5 (t, C-2), 43.4 (t, C-8), 38.1 (d, C-6),
28.7 (t, C-1¢), 25.9 {q, OSi[(CH3)2]C(CH3)3}, 25.8 {q,
OSi[(CH3)2]C(CH3)3}, 18.1 {s, OSi[(CH3)2]C(CH3)3}, 18.0
{s, OSi[(CH3)2]C(CH3)3}, 16.0 (q, 6-CH3), 12.4 (q, 4-CH3),
–4.5 [q, 2 × OSiC(CH3)3], –4.6 [q, OSiC(CH3)3], –5.2 [q,
OSiC(CH3)3]. HRMS (ESI): m/z [M + Na]+ calcd for
C39H67Si2NO8: 756.4303; found: 756.4306.
(14) Kashin, D.; Meyer, A.; Wittenberg, R.; Schöning, K.-U.;
Gommlich, S.; Kirschning, A. Synthesis 2007, 304.
(15) Becker, A. M.; Rickards, R. W.; Brown, R. F. C.
Tetrahedron 1983, 39, 4189.
(16) Other vinylmetal species such as vinylstannane and
vinylzinc only gave reduced yields of the coupling product
in Pd(0)-catalyzed cross-coupling reactions: Pérez, I.; Pérez
Sestelo, J.; Sarandeses, L. A. J. Am. Chem. Soc. 2001, 123,
4155.
(17) Andrus, M. B.; Meredith, E. L.; Soma Sekhar, B. B. V. Org.
Lett. 2001, 6, 259.
(18) Cabré, J.; Palomo, A. L. Synthesis 1984, 413.
(19) General Procedure for the Preparation of Amides 17 and
19: Ketoacid 18 (1 equiv) was dissolved in CH2Cl2, then
treated with BOPCl (1 equiv) and DIPEA (1 equiv) and
stirred at r.t. for 3 h. A solution of aniline 8/9 (1 equiv) and
DIPEA (1 equiv) in CH2Cl2 was added over a period of 2 h.
After completion (ca. 18 h), the reaction was terminated by
addition of aq phosphate buffer (pH 7) and CH2Cl2. The
organic phases were combined, dried over Na2SO4 and the
solvent was removed under reduced pressure. Flash column
chromatography over silica eluting with hexanes–EtOAc
(20:1) furnished the corresponding amide 17/19.
(20) (a) Gradillas, A.; Pérez-Castells, J. Angew. Chem. Int. Ed.
2006, 45, 6086; Angew. Chem. 2006, 118, 6232.
(b) Lemarchand, A.; Bach, T. Synthesis 2005, 1977.
(c) McErlean, C. S. P.; Proisy, N.; Davis, C. J.; Boland, N.
A.; Sharp, S. Y.; Boxall, K.; Slawin, A. M. Z.; Workman, P.;
Moody, C. J. Org. Biomol. Chem. 2007, 5, 531.
Spectroscopic data for 17: [a]D20 –59.0 (c = 1.2, CHCl3). 1H
NMR (400 MHz, CDCl3; CHCl3 = 7.26 ppm): d = 7.69–7.71
(m, 4 H, OTBDPS), 7.50 (s, 1 H, NH), 7.33–7.43 (m, 6 H,
OTBDPS), 6.95 (s, 1 H, ArH), 6.83 (s, 1 H, ArH), 6.27 (s, 1
H, ArH), 5.73 (ddt, J = 6.7, 10.2, 16.9 Hz, 1 H, 2¢-H), 5.67
(ddd, J = 6.9, 10.3, 17.2 Hz, 1 H, 11-H), 5.44 (ddd, J = 1.3,
1.3, 17.2 Hz, 1 H, 12-H), 5.37 (ddd, J = 1.3, 1.3, 10.3 Hz, 1
H, 12-H¢), 5.33–5.37 (m, 1 H, 5-H), 4.92 (ddd, J = 1.6, 1.6,
17.1 Hz, 1 H, 3¢-H), 4.89 (ddd, J = 1.6, 1.6, 17.1 Hz, 1 H, 3¢-
H¢), 4.39 (dd, J = 3.5, 7.3 Hz, 1 H, 3-H), 4.01–4.06 (m, 2 H,
7-H, 10-H), 3.33 (s, 3 H, 10-OCH3), 3.13 (s, 1 H, 1¢-H), 3.12
(s 1 H, 1¢-H¢), 2.66 (dd, J = 6.7, 17.2 Hz, 1 H, 8-H), 2.57 (dd,
J = 4.6, 17.2 Hz, 1 H, 8-H¢), 2.47–2.52 (m, 1 H, 6-H), 2.42
(dd, J = 3.8, 13.8 Hz, 1 H, 2-H), 2.36 (dd, J = 7.8, 13.8 Hz,
1 H, 2-H¢), 1.59 (d, J = 1.6 Hz, 3 H, 4-CH3), 1.08 (s, 9 H,
OTBDPS), 0.86 (d, J = 7.0 Hz, 3 H, 6-CH3), 0.84 [s, 9 H,
(21) Tetra-n-butylammonium fluoride (TBAF) turned out to be
too basic for inducing the elimination of the siloxy group at
C-3.
(22) General Procedure for the Preparation of Macrocycles 5
and 6: Amide 17/19 (1 equiv) was dissolved in anhyd
CH2Cl2, treated with Grubbs’ 2nd generation catalyst (0.2
equiv) and heated to reflux. After completion (ca. 6 h), the
reaction was terminated by the addition of aq phosphate
buffer (pH 7). The organic phases were combined, dried over
Na2SO4 and the solvent was removed under reduced
pressure. Flash column chromatography over silica with
hexanes–EtOAc (20:1) as eluent yielded the corresponding
protected macrolactams which were dissolved in anhyd THF
and treated with HF·Py (ca. 70% HF, excess) at r.t. After
Synlett 2007, No. 8, 1264–1268 © Thieme Stuttgart · New York