Communication
ChemComm
truncated model cluster 30 at the TPSS/pcSseg-2 level of theory.
Complex 2 was chosen as a reference system and the reso-
nances of the 31P{1H} NMR spectrum (Fig. 4) were assigned
according to the calculation, allowing for the iterative fitting of
the 31P{1H} NMR spectrum of 3 (see the ESI†). DFT-calculated
J(31P,31P) coupling constants were used as an initial starting
point for the fitting procedure (see Table S1, ESI†). Five large
1J(31P,31P) coupling constants (ꢁ204.2 to ꢁ409.7 Hz) and one
unexpectedly small 1J(31P,31P) coupling constant of ꢁ7.5 Hz
between nuclei PA and PB were derived. The small 1J(PA,PB)
(ꢁ7.5 Hz) coupling constant might be explained by the rela-
tively long distance of the nuclei PA and PB observed by X-ray
crystallography (P3–P8 2.4018(7) Å). Notably, a rather large
coupling constant of 218.1 Hz between nuclei PD and PM is
observed despite the long P–P distance (P1ꢀ ꢀ ꢀP6 3.0176(7) Å)
deduced from the solid-state structure. We reason this finding
as a through space coupling as observed also in other polypho-
sphorus compounds.25
In summary, we have shown that the (NHC)Ni synthon
[(NHC)Ni(Z2-vtms)2] (NHC = IDipp, IMes, vtms = Me3SiCHQCH2)
effects a unusual dimerisation of [LSi(Z2-P4)] to form the Ni2Si2P8
cluster 3. Additionally, the classical (NHC)Ni complexes 1a, b and
2 have been isolated alongside. Such Ni complexes show great
potential as starting materials for the synthesis of ternary phos-
phorus cluster such as compound 3 as they are well-defined and
conveniently prepared. Derivatisation reactions of the cluster core
3 through the substitution of the diketiminate ligands L may
further enhance the diversity of this class of cluster molecules.
An extension of the synthetic methodology reported here and the
use of 3 and related clusters as single source precursors for
phosphorus-based materials will be of significant future interest.
We thank Dr Peter Coburger for assistance with the DFT
calculations and Julia Leitl for help with preparing the manu-
script. Generous financial support by the Deutsche Forschungs-
gemeinschaft (WE4621/3-1 and WO1496/7-1), the European
Research Council (CoG 772299) and the Fonds der Chemischen
and S. T. Oyama, Chem. Commun., 2005, 1143; (e) S. T. Oyama,
J. Catal., 2003, 216, 343; ( f ) R. Prins, G. Pirngruber and T. Weber,
Chimia, 2001, 55, 791.
5 S. L. Brock, S. C. Perera and K. L. Stamm, Chem. – Eur. J., 2004,
10, 3364.
6 (a) Z. Jin, P. Li, X. Huang, G. Zeng, Y. Jin, B. Zheng and D. Xiao,
J. Mater. Chem. A, 2014, 2, 18593–18599; (b) Y. Li, X. Jiang, Z. Miao,
J. Tang, Q. Zheng, F. Xie and D. Lin, ChemCatChem, 2019, 12,
917–925; (c) H.-W. Man, C.-S. Tsang, M. Meng-Jung Li, J. Mo,
B. Huang, L. Yoon Suk Lee, Y.-C. Leung, K.-Y. Wong and S. Chi
Edman Tsang, Appl. Catal., B, 2019, 242, 186–193; (d) S. Anantharaj,
S. Rao Ede, K. Sakthikumar, K. Karthick, S. Mishra and S. Kundu,
ACS Catal., 2016, 6(12), 8069–8097.
7 J. Chang, K. Li, Z. Wu, J. Ge, C. Liu and W. Xing, ACS Appl. Mater.
Interfaces, 2018, 10, 26303–26311.
8 M. Shatruk, in Fundamentals and applications of phosphorus nano-
materials, ed. H.-F. Ji, American Chemical Society, Washington, DC,
2019, vol. 6, pp. 103–134.
9 (a) K. L. Stamm, J. C. Garno, G.-y. Liu and S. L. Brock, J. Am. Chem.
Soc., 2003, 125, 4038; (b) S. C. Perera, G. Tsoi, L. E. Wenger and
S. L. Brock, J. Am. Chem. Soc., 2003, 125, 13960.
´
10 S. Carenco, I. Resa, X. Le Goff, P. Le Floch and N. Mezailles, Chem.
Commun., 2008, 2568.
11 (a) A. E. Henkes, Y. Vasquez and R. E. Schaak, J. Am. Chem. Soc.,
2007, 129, 1896; (b) R.-K. Chiang and R.-T. Chiang, Inorg. Chem.,
2007, 46, 369.
´
¨
12 (a) T. Grell, D. M. Yufanyi, A. K. Adhikari, M.-B. Sarosi, P. Lonnecke
and E. Hey-Hawkins, Pure Appl. Chem., 2019, 91, 103; (b) A. Kırcalı
¨
Akdag, P. Lonnecke and E. Hey-Hawkins, Z. Anorg. Allg. Chem., 2014,
640, 271.
13 P. Dapporto, S. Midollini and L. Sacconi, Angew. Chem., Int. Ed. Engl.,
1979, 18, 469.
14 Selected examples of P4 activation using NiII sources: (a) M. Di Vaira,
S. Midollini and L. Sacconi, J. Am. Chem. Soc., 1979, 101, 1757;
(b) M. Di Vaira, C. A. Ghilardi, S. Midollini and L. Sacconi, J. Am.
Chem. Soc., 1978, 100, 2550.
15 Selected examples of P4 activation using NiI sources: (a) S. Pelties,
D. Herrmann, B. d. Bruin, F. Hartl and R. Wolf, Chem. Commun., 2014,
50, 7014; (b) S. Yao, Y. Xiong, C. Milsmann, E. Bill, S. Pfirrmann,
C. Limberg and M. Driess, Chem.
(c) O. J. Scherer, J. Braun, P. Walther and G. Wolmershauser, Chem.
– Eur. J., 2010, 16, 436;
¨
¨
Ber., 1992, 125, 2661; (d) O. J. Scherer, J. Braun and G. Wolmershauser,
Chem. Ber., 1990, 123, 471; (e) O. J. Scherer, T. Dave, J. Braun and
¨
G. Wolmershauser, J. Organomet. Chem., 1988, 350, C20–C24.
16 B. Zarzycki, T. Zell, D. Schmidt and U. Radius, Eur. J. Inorg. Chem.,
2013, 2051.
17 G. Hierlmeier, P. Coburger, N. P. van Leest, B. de Bruin and R. Wolf,
Angew. Chem., Int. Ed., 2020, 59, 14148–14153.
18 Y. Xiong, S. Yao, E. Bill and M. Driess, Inorg. Chem., 2009, 48, 7522.
19 Y. Xiong, S. Yao, M. Brym and M. Driess, Angew. Chem., Int. Ed.,
2007, 46, 4511.
20 (a) M. R. Elsby, J. Liu, S. Zhu, L. Hu, G. Huang and S. A. Johnson,
Organometallics, 2019, 38, 436; (b) M. R. Elsby and S. A. Johnson,
J. Am. Chem. Soc., 2017, 139, 9401.
´
Industrie (Kekule fellowship to G.H.) is gratefully acknowledged.
Conflicts of interest
There are no conflicts to declare.
´
´
´
21 B. Cordero, V. Gomez, A. E. Platero-Prats, M. Reves, J. Echeverrıa,
´
E. Cremades, F. Barragan and S. Alvarez, Dalton Trans., 2008, 2832.
Notes and references
22 J.-C. Hierso, Chem. Rev., 2014, 114, 4838.
23 (a) D. L. DeLaet, P. E. Fanwick and C. P. Kubiak, Organometallics, 1986,
5, 1807; (b) A. Kempter, C. Gemel, T. Cadenbach and R. A. Fischer,
Organometallics, 2007, 26, 4257; (c) O. Serrano, E. Hoppe, J. C. Fettinger
and P. P. Power, J. Organomet. Chem., 2011, 696, 2217; (d) A. Seifert and
G. Linti, Inorg. Chem., 2008, 47, 11398.
1 V. Jourdain, E. T. Simpson, M. Paillet, T. Kasama, R. E. Dunin-
Borkowski, P. Poncharal, A. Zahab, A. Loiseau, J. Robertson and
P. Bernier, J. Phys. Chem. B, 2006, 110, 9759.
2 (a) H. Li, G. Li and Z. Liu, ACS Omega, 2019, 4, 2075; (b) A. Parra-
Puerto, K. L. Ng, K. Fahy, A. E. Goode, M. P. Ryan and A. Kucernak,
ACS Catal., 2019, 9, 11515; (c) Z. Sun, M. Zhu, M. Fujitsuka, A. Wang,
C. Shi and T. Majima, ACS Appl. Mater. Interfaces, 2017, 9, 30583;
(d) Y. Shi and B. Zhang, Chem. Soc. Rev., 2016, 45, 1529.
3 G. Zhang, G. Wang, Y. Liu, H. Liu, J. Qu and J. Li, J. Am. Chem. Soc., 2016,
138, 14686.
24 G. Knizia, J. Chem. Theory Comput., 2013, 9, 4834.
25 For representative examples, see: (a) C. Taube, K. Schwedtmann,
M. Noikham, E. Somsook, F. Hennersdorf, R. Wolf and
J. J. Weigand, Angew. Chem., Int. Ed., 2020, 59, 3585; (b) P. Coburger,
¨
P. Bielytskyi, D. Williamson, E. Rys, A. Kreienbrink, P. Lonnecke,
J. Matysik and E. Hey-Hawkins, Chem. – Eur. J., 2019, 25, 11456;
(c) H. C. E. McFarlane and W. McFarlane, Polyhedron, 1999, 18, 2117;
(d) H. C. E. McFarlane and W. McFarlane, Polyhedron, 1988, 7, 1875.
4 (a) S. T. Oyama, T. Gott, H. Zhao and Y.-K. Lee, Catal. Today, 2009,
143, 94; (b) I. I. Abu and K. J. Smith, Appl. Catal., A, 2007, 328, 58;
(c) S. Yang, C. Liang and R. Prins, J. Catal., 2006, 237, 118; (d) Y. Shu
Chem. Commun.
This journal is © The Royal Society of Chemistry 2020