Communications
signals, a septet at d = 4.53 (2JH,H = 3.6 Hz) for the free
an alternative view is adopted, the structures 4 and 5 exhibit
multiple agostic interactions induced by the silylium ion.
SigMe2H group and an upfield-shifted singlet at d =
4.28 ppm for Hb, indicative of agostic bonding. The methyl
groups give rise to three signals at d = 1.02 (silylium ion
Received: October 17, 2006
Revised: March 8, 2007
Published online: May 4, 2007
SiMea ), 0.84 (d, 2JH,H = 2.1 Hz, Meb), and 0.54 ppm (d, 2JH,H
=
2
3.6 Hz, Meg), with relative intensities of 1:2:2. Like 4, the
cation 5 is stable in chlorinated solvents at least for two days.
The 29Si NMR spectrum of 5 contains three signals. The
SigMe2H group, which is not involved in significant agostic
bonding, gives rise to a doublet of septets at d = ꢀ4.5 ppm
Keywords: agostic interactions · density functional calculations ·
.
silicon · silylium ions
1
(2JSi,H = 7.1 Hz, JSi,H = 166.2 Hz). The two SibMe2H groups,
ꢀ
complexing the silylium ion through two Si H agostic
interactions, have a downfield-shifted (compared to the
[1] Reviews: a) T. Müller, Adv. Organomet. Chem. 2005, 53, 155 –
216; b) C. A. Reed, Acc. Chem. Res. 1998, 31, 325 – 332; c) J. B.
Lambert, L. Kania, S. Zhang, Chem. Rev. 1995, 95, 1191; d) J.
Chojnowski, W. Stanczyk, Main Group Chem. News 1993, 1,
1371; e) P. D. Lickiss, J. Chem. Soc. Dalton Trans. 1992, 1333;
f) C. Eaborn, J. Organomet. Chem. 1991, 405, 173; g) J. B.
Lambert, W. J. Schulz, Jr., The Chemistry of Organic Silicon
Compounds, Part 2 (Eds.: S. Patai, Z. Rappoport), Wiley,
Chichester, 1989, p. 1007.
values expected for a PhSiMe2H moiety) signal at d =
ꢀ
33.5 ppm with a noticeably decreased direct Si H coupling
(1JSi,H = 87.2 Hz, 2JSi,H = 6.9 Hz). Finally, the silylium ion gives
rise to a multiplet at d = 34.3 ppm, which upon selective
decoupling from the Me protons resolves into a triplet with
JSia,Hb = 16.1 Hz, suggesting a diagostic bonding with the b-H
1
ꢀ
Si bonds. Cooling down the sample to ꢀ808C does not change
these spectral patterns, apart from the expected temperature-
induced shifts of resonances, consistent with the absence of
fluctionality in this system. The IR spectrum of 5 exhibits two
red-shifted bands[16] (1747 cmꢀ1 (exptl) vs. 1738 cmꢀ1 (calcd)
and 1810 cmꢀ1 (exptl) vs. 1817 cmꢀ1 (calcd)) for the agostic
[2] a) P. von R. Schleyer, Science 1997, 275, 39 – 40; b) P. P. Gaspar,
Science 2002, 297, 785 – 786.
[3] a) J. B. Lambert, J. A. McConnell, W. J. Schulz, Jr., J. Am. Chem.
Soc. 1986, 108, 2482 – 2484; b) J. B. Lambert, J. A. McConnell,
W. Schilf, W. J. Schulz, Jr., J. Chem. Soc. Chem. Commun. 1988,
455 – 456; c) G. K. S. Prakash, S. Keyaniyan, R. Aniszfeld, L.
Heiliger, G. A. Olah, R. C. Stevens, H. K. Choi, R. Bau, J. Am.
Chem. Soc. 1987, 109, 5123 – 5126; d) Z. Xie, D. J. Liston, T.
Jelinek, V. Mitro, R. Bau, C. A. Reed, J. Chem. Soc. Chem.
Commun. 1993, 384 – 386; e) M. Kira, T. Hino, H. Sakurai,
Chem. Lett. 1993, 153 – 156; f) S. R. Bahr, P. Boudjouk, J. Am.
Chem. Soc. 1993, 115, 4514 – 4519; g) D. Cremer, L. Olsson, C.-
H. Ottosson, J. Mol. Struct. (THEOCHEM) 1994, 313, 91 – 109.
[4] a) J. B. Lambert, Y. Zhao, S. M. Zhang, J. Phys. Org. Chem. 2001,
14, 370; b) C. A. Reed, Z. Xie, R. Bau, A. Benesi, Science 1993,
262, 402; c) Z. Xie, J. Manning, R. W. Reed, R. Mathur, P. D. W.
Boyd, A. Benesi, C. A. Reed, J. Am. Chem. Soc. 1996, 118, 2922 –
2928; d) M. Kira, T. Hino, H. Sakurai, J. Am. Chem. Soc. 1992,
114, 6697 – 6700.
[5] a) P. Jutzi, A. E. Bunte, Angew. Chem. 1992, 104, 1636; Angew.
Chem. Int. Ed. Engl. 1992, 31, 1605; b) H.-U. Steinberger, T.
Müller, N. Auner, C. Maerker, P. von R. Schleyer, Angew. Chem.
1997, 109, 667; Angew. Chem. Int. Ed. Engl. 1997, 36, 626; c) J.
Schuppan, B. Herrschaft, T. Müller, Organometallics 2001, 20,
4584 – 4592; d) T. Müller, C. Bauch, M. Ostermeier, M. Bolte, N.
Auner, J. Am. Chem. Soc. 2003, 125, 2158 – 2168.
a
b
ꢀ
Si -H-Si bonds and one merged band for the g-Si H bonds at
2107 cmꢀ1 (2094–2098 cmꢀ1 (calcd)). To the best of our
knowledge, such a diagostic bonding is unprecedented in
the chemistry of silicon cations. The closest analogy exists
ꢀ
only with the weakB H···Sn interactions reported by Izod
et al. for a stannylene compound.[24]
The DFT-calculated structure of 5 completely supports
the presence of diagostic bonding (Figure 1b). A structure
with approximate Cs symmetry was obtained as a result of
!
ꢀ
optimization. The Sia Hb-Sib bonds (1.818 and 1.822 ) in 5
a
a
are longer than the Si
H bond in 4 but shorter than the
!
b
b
b b
Sia H -Si agostic interaction in 4. The H Si bond in 5
(1.594/1.596 ) is elongated as a result of electron-density
transfer to the silylium ion. The Sib center exhibits the same
distorted C-Si-H angle of 93.38 as the agostic Sib center in 4.
The calculated JSi,H values are in fair accord with the absolute
experimental coupling constants (j J j in parentheses):
ꢀ
b
a
b
ꢀ
ꢀ
ꢀ14.8 Hz (16.1 Hz) for H Si , ꢀ76.3 Hz (87.2 Hz) for H
[6] T. Müller, R. Meyer, D. Lennatz, H.-U. Siehl, Angew. Chem.
2000, 112, 3203; Angew. Chem. Int. Ed. 2000, 39, 3074.
b
g
g
[25]
ꢀ
Si , and ꢀ166.2 Hz (156.2 Hz) for H Si. As in 4, the low
values of JSia,Hb and JSib,Hb are the result of a higher silicon
[7] a) J. B. Lambert, S. Zhang, C. Stern, J. C. Huffman, Science 1993,
260, 1917; b) J. B. Lambert, S. Zhang, J. Chem. Soc. Chem.
Commun. 1993, 383; c) P. von R. Schleyer, P. Buzek, T. Müller,
Y. Apeloig, H.-U. Siehl, Angew. Chem. 1993, 105, 1558; Angew.
Chem. Int. Ed. Engl. 1993, 32, 1471; d) L. Olsson, D. Cremer,
Chem. Phys. Lett. 1993, 215, 433; e) J. B. Lambert, S. Zhang,
Science 1994, 263, 984; f) L. Pauling, Science 1994, 263, 983;
g) G. A. Olah, G. Rasul, H. A. Buchholz, X.-Y. Li, G. Sandford,
G. K. S. Prakash, Science 1994, 263, 983; h) C. A. Reed, Z. Xie,
Science 1994, 263, 985; i) G. A. Olah, G. Rasul, H. A. Buchholz,
X.-Y. Li, G. K. S. Prakash, Bull. Soc. Chim. Fr. 1995, 132, 569;
j) M. Arshadi, D. Johnels, U. Edlund, C.-H. Ottosson, D. Cremer,
J. Am. Chem. Soc. 1996, 118, 5120; k) K. Werner, R. Meyer, T.
Müller, Book of Abstracts, 34th Organosilicon Symposium,
White Plains, New York, 2001, p. PS2 – 9; l) P. D. Lickiss, P. C.
Masangane, W. Sohal, Book of Abstracts, 34th Organosilicon
Symposium, White Plains, New York, 2001, p. C-16.
ꢀ
p contribution to the Si H bonding (NBO occupation of the
“free” Si p orbital is 0.484, Table 1). The diagostic Sib-H!
!
Sia H-Sib interaction in 5 (MBO = 0.325) is weaker than the
3c–2e Sia-H-Sia bond in 4 (MBO = 0.445) but stronger than its
!
ꢀ
Sia H-Sib agostic bonding (MBO = 0.242). Correspondingly,
b
b
b
b
ꢀ
the H Si bond in 5 is weaker than the H Si bond in 4
(MBO = 0.582 and 0.664, respectively). Finally, the AIM
!
study of 5 revealed bond critical points for both Sia H-Sib
interactions.
Although a pentacoordinate silicon anion with two apical
hydride atoms has been recently characterized,[26] 4 and 5
ꢀ
present the first examples of a compound in which two Si H
bonds serve as ligands to a hypervalent silicon center.[27] Or, if
4532
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2007, 46, 4530 –4533