3160
Y. Huang et al. / Bioorg. Med. Chem. Lett. 20 (2010) 3158–3160
Table 1
Structure–activity relationships
R2
N
N
O
n
*
O
R1
N
X
NH2
Compd
Configuration
R1
R2
n
X
BACE Ki (nM)
Cellular Ab1–40 IC50 (nM)
7
12
13
14
15
16
17
18
19
20
21
(S)
(S)
(R)
(S)
(S)
(S)
(S)
(S)
(S)
(S)
(S)
Cyclohexyl
Cyclohexyl
Cyclohexyl
iso-Propyl
Cyclohexyl
iso-Propyl
Cyclohexyl
Cyclohexyl
Cyclohexyl
Cyclohexyl
Cyclohexyl
Cyclohexyl
Cyclohexyl
Cyclohexyl
Cyclohexyl
4-Tetrahydropyranyl
4-Tetrahydropyranyl
cis-4-Carboxycyclohexyl
trans-4-Carboxycyclohexyl
Cyclohexyl
1
2
2
1
1
1
1
1
1
1
1
CH
CH
CH
CH
CH
CH
CH
CH
CF
5
17
34
660
90
73
685
310
>1000
30
36
7
31
186
8
17
22
20
>1000
8
Cyclohexyl
Cyclohexyl
C(OMe)
N
12
5
Schwake, M.; D’Hooge, R.; Bach, P.; Kalinke, U.; Moechars, D.; Alzheimer, C.;
Reiss, K.; Saftig, P.; De Strooper, B. J. Biol. Chem. 2005, 280, 30797.
6. Ohno, M.; Sametsky, E. A.; Younkin, L. H.; Oakley, H.; Younkin, S. G.; Citron, M.;
Vassar, R.; Disterhoft, J. F. Neuron 2004, 41, 27.
7-carbon atom with nitrogen (analog 21) maintained BACE activity
(Ki = 5 nM), but improved cellular activity to an IC50 of 7 nM. A
number of these macrocyclic analogs were tested in vivo, and b-
amyloid lowering was detected in plasma.11 However, upon intra-
venous, intraperitoneal, or oral administration, only trace levels of
compound were detected in the brain, and no lowering of b-amy-
loid in the brain was observed. Preliminary experiments suggest
that P-glycoprotein efflux may prevent brain penetration of these
compounds. In conclusion, structural biology is a powerful tool in
the design of potent, non-peptide BACE inhibitors, but a continuing
challenge is the discovery of compounds which reduce b-amyloid
levels in the brain upon oral administration.
7. (a) Sankaranarayanan, S.; Holahan, M. A.; Colussi, D.; Crouthamel, M.-C.;
Devanarayan, V.; Ellis, J.; Espeseth, A.; Gates, A. T.; Graham, S. L.; Gregro, A. R.;
Hazuda, D.; Hochman, J. H.; Holloway, K.; Jin, L.; Kahana, J.; Lai, M.-T.;
Lineberger, J.; McGaughey, G.; Moore, K. P.; Nantermet, P.; Pietrak, B.; Price, E.
A.; Rajapakse, H.; Stauffer, S.; Steinbeiser, M. A.; Seabrook, G.; Selnick, H. G.;
Shi, X.-P.; Stanton, M. G.; Swestock, J.; Tugusheva, K. S.; Tyler, K. X.; Vacca, J. P.;
Wong, J.; Wu, G.; Xu, M.; Cook, J. J.; Simon, A. J. J. Pharmacol. Exp. Ther. 2009,
328, 131; (b) Meredith, J. E., Jr.; Thompson, L. A.; Toyn, J. H.; Marcin, L.; Barten,
D. M.; Marcinkeviciene, J.; Kopcho, L.; Kim, Y.; Lin, A.; Guss, V.; Burton, C.; Iben,
L.; Polson, C.; Cantone, J.; Ford, M.; Drexler, D.; Fiedler, T.; Lentz, K. A.; Grace, J.
E., Jr.; Kolb, J.; Corsa, J.; Pierdomenico, M.; Jones, K.; Olsen, R. E.; Macor, J. E.;
Albright, C. F. J. Pharmacol. Exp. Ther. 2008, 326, 502; (c) Barrow, J. C.; Stauffer, S.
R.; Rittle, K. E.; Ngo, P. L.; Yang, Z.; Selnick, H. G.; Graham, S. L.; Munshi, S.;
McGaughey, G. B.; Holloway, M. K.; Simon, A. J.; Price, E. A.; Sankaranarayanan,
S.; Colussi, D.; Tugusheva, K.; Lai, M.-T.; Espeseth, A. S.; Xu, M.; Huang, Q.;
Wolfe, A.; Pietrak, B.; Zuck, P.; Levorse, D. A.; Hazuda, D.; Vacca, J. P. J. Med.
Chem. 2008, 51, 6259; (d) Ghosh, A. K.; Kumaragurubaran, N.; Hong, L.;
Kulkarni, S.; Xu, X.; Miller, H. B.; Reddy, D. S.; Weerasena, V.; Turner, R.; Chang,
W.; Koelsch, G.; Tang, J. Bioorg. Med. Chem. Lett. 2008, 18, 1031; (e) Stanton, M.
G.; Stauffer, S. R.; Gregro, A. R.; Steinbeiser, M.; Nantermet, P.;
Sankaranarayanan, S.; Price, E. A.; Wu, G.; Crouthamel, M.-C.; Ellis, J.; Lai, M.-
T.; Espeseth, A. S.; Shi, X.-P.; Jin, L.; Colussi, D.; Pietrak, B.; Huang, Q.; Xu, M.;
Simon, A. J.; Graham, S. L.; Vacca, J. P.; Selnick, H. J. Med. Chem. 2007, 50, 3431;
(f) Ghosh, A. K.; Kumaragurubaran, N.; Hong, L.; Kulkarni, S. S.; Xu, X.; Chang,
W.; Weerasena, V.; Turner, R.; Koelsch, G.; Bilcer, G.; Tang, J. J. Med. Chem. 2007,
50, 2399; (g) Hussain, I.; Hawkins, J.; Harrison, D.; Hille, C.; Wayne, G.; Cutler,
L.; Buck, T.; Walter, D.; Demont, E.; Howes, C.; Naylor, A.; Jeffrey, P.; Gonzalez,
M. I.; Dingwall, C.; Michel, A.; Redshaw, S.; Davis, J. B. J. Neurochem. 2007, 100,
802; (h) Stachel, S. J.; Coburn, C. A.; Sankaranarayanan, S.; Price, E. A.; Pietrak, B.
L.; Huang, Q.; Lineberger, J.; Espeseth, A. S.; Jin, L.; Ellis, J.; Holloway, M. K.;
Munshi, S.; Allison, T.; Hazuda, D.; Simon, A. J.; Graham, S. L.; Vacca, J. P. J. Med.
Chem. 2006, 49, 6147; (i) Asai, M.; Hattori, C.; Iwata, N.; Saido, T. C.; Sasagawa,
N.; Szabó, B.; Hashimoto, Y.; Maruyama, K.; Tanuma, S.; Kiso, Y.; Ishiura, S. J.
Neurochem. 2006, 96, 533; (j) Chang, W.-P.; Koelsch, G.; Wong, S.; Downs, D.;
Da, H.; Weerasena, V.; Gordon, B.; Devasamudram, T.; Bilcer, G.; Ghosh, A. K.;
Tang, J. J. Neurochem. 2004, 89, 1409.
Acknowledgments
We thank Chris Teleha, Scott Ballentine, Craig Diamond, and
Laura Reany for the large scale synthesis of several key inter-
mediates.
References and notes
1. (a) Goedert, M.; Spillantini, M. G. Science 2006, 314, 777; (b) Roberson, E. D.;
Mucke, L. Science 2006, 314, 781.
2. (a) Giacobini, E.; Becker, R. E. J. Alzheimer Dis. 2007, 12, 37; (b) Robichaud, A. J.
Curr. Top. Med. Chem. 2006, 6, 553; (c) Churcher, I. Curr. Top. Med. Chem. 2006, 6,
579; (d) Catalano, S. M.; Dodson, E. C.; Henze, D. A.; Joyce, J. G.; Krafft, G. A.;
Kinney, G. G. Curr. Top. Med. Chem. 2006, 6, 597.
3. (a) Silvestri, R. Med. Res. Rev. 2009, 29, 295; (b) Stockley, J. H.; O’Neill, C. Cellu.
Mol. Life Sci. 2008, 65, 3265; (c) Ghosh, A. K.; Gemma, S.; Tang, J.
Neurotherapeutics 2008, 5, 399; (d) Venugopal, C.; Demos, C. M.; Rao, K. S. J.;
Pappolla, M. A.; Sambamurti, K. C. N. S. Neurol. Disord. Drug Targets 2008, 7, 278;
(e) Olson, R. E.; Marcin, L. R. Annu. Rep. Med. Chem. 2007, 42, 27; (f) Hills, I. D.;
Vacca, J. P. Curr. Opin. Drug Discovery Dev. 2007, 10, 383.
4. (a) Nishitomi, K.; Sakaguchi, G.; Horikoshi, Y.; Gray, A. J.; Maeda, M.; Hirata-
Fukae, C.; Becker, A. G.; Hosono, M.; Sakaguchi, I.; Minami, S. S.; Nakajima, Y.;
Li, H.-F.; Takeyama, C.; Kihara, T.; Ota, A.; Wong, P. C.; Aisen, P. S.; Kato, A.;
Kinoshita, N.; Matsuoka, Y. Neurochemistry 2006, 99, 1555; (b) Luo, Y.; Bolon,
B.; Damore, M. A.; Fitzpatrick, D.; Liu, H.; Zhang, J.; Yan, Q.; Vassar, R.; Citron,
M. Neurobiol. Dis. 2003, 14, 81. and references cited therein.
8. Baxter, E. W.; Conway, K. A.; Kennis, L.; Bischoff, F.; Mercken, M. H.; De Winter,
H. L.; Reynolds, C. H.; Tounge, B. A.; Luo, C.; Scott, M. K.; Huang, Y.; Braeken, M.;
Pieters, S. M. A.; Berthelot, D. J. C.; Masure, S.; Bruinzeel, W. D.; Jordan, A. D.;
Parker, M. H.; Boyd, R. E.; Qu, J.; Qu, J.; Qu, J.; Brenneman, D. E.; Reitz, A. B. J.
Med. Chem. 2007, 50, 4261.
9. Ghosh, A. K.; Shin, D.; Downs, D.; Koelsch, G.; Lin, X.; Ermolieff, J.; Tang, J. J. Am.
Chem. Soc. 2000, 122, 3522.
10. Jorgensen, W. L.; Tirado-Rives, J. J. Am. Chem. Soc. 1988, 110, 1657.
5. (a) Hu, X.; Hicks, C. W.; He, W.; Wong, P.; Macklin, W. B.; Trapp, B. D.; Yan, R.
Nat. Neurosci. 2006, 9, 1520; (b) Laird, F. M.; Cai, H.; Savonenko, A. V.; Farah, M.
H.; He, K.; Melnikova, T.; Wen, H.; Chiang, H.-C.; Xu, G.; Koliatsos, V. E.;
Borchelt, D. R.; Price, D. L.; Lee, H.-K.; Wong, P. C. J. Neurosci. 2005, 25, 11693;
(c) Dominguez, D.; Tournoy, J.; Hartmann, D.; Huth, T.; Cryns, K.; Deforce, S.;
Serneels, L.; Camacho, I. E.; Marjaux, E.; Craessaerts, K.; Roebroeck, A. J. M.;
11. When macrocycle
7
was dosed orally in non-transgenic mice,
a
statistically significant effect on Ab lowering in plasma was observed:
23%, 22%, and 13%, at 50 mg/kg, 25 mg/kg, and 10 mg/kg dose,
respectively, in 10% solutol.