been developed for the aromatization.5-9 These include the use
of stoichiometric or excess amount of inorganic oxidants5 such
as Zr(NO3)4, CAN, CrO2, HNO3, MnO2, NaIO4, and Mn(OAc)3
or organic oxidants6 such as NO, phenyliodine(III) bis(trifluo-
roacetate), S-nitrosoglutathione, and 4-phenyl-1,2,4-triazole-3,5-
dione. To carry out the aromatization in a catalytic way, Tung
and Wu et al. reported the elegant photocatalytic aromatization
of 1,4-DHP by platinum(II) terpyridyl complexes leading to the
generation of H2.7 In order to make the aromatization more
atom-economical and environmentally benign, the use of
molecular oxygen as a clean source of oxidant is, of course,
highly desirable. Since oxygen itself does not oxidize 1,4-DHP
effectively, the help of an appropriate catalyst is necessary.8,9
RuCl3, silica gel-supported Co/Mn p-aminobenzoate, Pd/C, and
ferric perchlorate in acetic acid have thus been developed as
catalysts for such a purpose.10 However, harsh reaction condi-
tions such as high temperature and long reaction time are usually
required and the yields of products are sometimes low.10 More
recently, Liu and co-workers reported the photostimulated
aerobic aromatization of 1,4-DHP by catalysis of N-hydroxy-
phthalimide.11 This method is advantageous over the previous
ones in terms of organocatalysis. However, it suffers from the
low catalytic efficiency (20 mol % of catalyst loading) and the
limited scope of application. For example, 4-(nitrophenyl)-
substituted 1,4-DHP are inert under such conditions. Besides,
the catalyst underwent decomposition under the experimental
conditions (CH3CN, reflux). Therefore, the development of more
9-Phenyl-10-methylacridinium: A Highly
Efficient and Reusable Organocatalyst for Mild
Aromatization of 1,4-Dihydropyridines by
Molecular Oxygen
Xinqiang Fang,† You-Cheng Liu,*,‡ and Chaozhong Li*,†,‡
Joint Laboratory of Green Synthetic Chemistry, Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences,
354 Fenglin Road, Shanghai 200032, China, and Department of
Chemistry, UniVersity of Science and Technology of China,
Hefei, Anhui 230026, China
clig@mail.sioc.ac.cn; ycliu@ustc.edu.cn
ReceiVed August 15, 2007
The mild, efficient, and general aerobic aromatization of
Hantzsch 1,4-dihydropyridines was realized at room tem-
perature with 5 mol % of 9-phenyl-10-methylacridinium
perchlorate as the photocatalyst, which could be easily
recovered and reused.
(5) (a) Bocker, R.; Guengerich, F. P. J. Med. Chem. 1986, 29, 1596. (b)
Pfister, J. R. Synthesis 1990, 689. (c) Garcia, O.; Delgado, F. Tetrahedron
Lett. 1992, 34, 623. (d) Eynde, J.; Delfaese, F.; Mayence, A.; Haverbeke,
Y. Tetrahedron 1995, 51, 6511. (e) Varma, R. S.; Kumar, D. Tetrahedron
Lett. 1999, 40, 21. (f) Ko, K.; Kim, J. Tetrahedron Lett. 1999, 40, 3207.
(g) Anniyappan, M.; Muralidharan, D.; Perumal, P. T. Tetrahedron 2002,
58, 5069. (h) Sabitha, G.; Reddy, G. S. K. K.; Reddy, C. S.; Fatima, N.;
Yadav, J. S. Synthesis 2003, 1267. (i) Xia, J.-J.; Wang, G.-W. Synthesis
2005, 2379. (j) Bagley, M. C.; Lubinu, M. C. Synthesis 2006, 1283. (k)
Moghadam, M.; Nasr-Esfahani, M.; Tangestaninejad, S.; Mirkhani, V.
Bioorg. Med. Chem. Lett. 2006, 16, 2026. (l) Nasr-Esfahani, M.; Moghadam,
M.; Tangestaninejad, S.; Mirkhani, V.; Momeni, A. R. Bioorg. Med. Chem.
2006, 14, 2720.
(6) (a) Itoh, T.; Nagata, K.; Matsuya, Y.; Miyazaki, M.; Ohsawa, A. J.
Org. Chem. 1997, 62, 3582. (b) Varma, R. S.; Kumar, D. J. Chem. Soc.,
Perkin Trans. 1 1999, 1755. (c) Yadav, J. S.; Reddy, B. V. S.; Sabitha, G.;
Kreddy, G. S. K. K. Synthesis 2000, 1532. (d) Mao, Y.-Z.; Jin, M.-Z.; Liu,
Z.-L.; Wu, L.-M. Org. Lett. 2000, 2, 741. (e) Zhu, X.-Q.; Zhao, B.-J.; Cheng,
J.-P. J. Org. Chem. 2000, 65, 8158. (f) Zolfigol, M. A.; Choghamarani, A.
G.; Shahamirian, M.; Safaiee, M.; Mohammadpoor-Baltork, I.; Mallakpour,
S.; Abdollahi-Alibeik, M. Tetrahedron Lett. 2005, 46, 5581. (g) Nasr-
Esfahani, M.; Moghadam, M.; Tangestaninejad, S.; Mirkhani, V. Bioorg.
Med. Chem. Lett. 2005, 15, 3276.
Hantzsch 1,4-dihydropyridines (1,4-DHP) are an important
class of drugs for the treatment of cardiovascular diseases such
as hypertension and angina pectoris.1 The reduced nicotinamide
adenine dinucleotide (NADH) as a 1,4-DHP derivative acts as
the electron source for the reduction of O2 to H2O in the
respiratory chain.2 Hantzsch esters (2,6-dialkyl-3,5-dialkoxy-
carbonyl-1,4-dihydropyridines) have been widely used to model
the biological hydride transfer mechanism of coenzyme NADH.3
In the meantime, 1,4-DHP also serve as important intermediates
in the synthesis of multisubstituted pyridine compounds.4 The
oxidative aromatization of 1,4-DHP has thus drawn enormous
attention in both synthetic and biomechanistic points of view
and continues to be actively pursued. A variety of reagents have
(7) Zhang, D.; Wu, L.-Z.; Zhou, L.; Han, X.; Yang, Q.-Z.; Zhang, L.-
P.; Tung, C.-H. J. Am. Chem. Soc. 2004, 126, 3440.
(8) The direct photo-oxidation of 1,4-DHP with chloroform as both the
solvent and the oxidant was reported. See: Memarian, H. R.; Mirjafari, A.
Bioorg. Med. Chem. Lett. 2005, 15, 3423.
(9) The photoinduced intramolecular electron transfer of some nitrophen-
yl-substituted 1,4-DHP was reported. See: Fasani, E.; Fagnoni, M.; Dondi,
D.; Albini, A. J. Org. Chem. 2006, 71, 2037.
(10) (a) Mashraqui, S. H.; Kamik, M. A. Tetrahedron Lett. 1998, 39,
4895. (b) Nakamichi, N.; Kawashita, Y.; Hayashi, M. Org. Lett. 2002, 4,
3955. (c) Hashemi, M. M.; Ahmadibeni, Y. Monatsh. Chem. 2003, 134,
411. (d) Nakamichi, N.; Kawashita, Y.; Hayashi, M. Synthesis 2004, 1015.
(e) Heravi, M. M.; Behbahani, F. K.; Oskooie, H. A.; Shoar, R. H.
Tetrahedron Lett. 2005, 46, 2775.
† Shanghai Institute of Organic Chemistry.
‡ University of Science and Technology of China.
(1) (a) Meyer, H. Annu. Rep. Med. Chem. 1982, 17, 71. (b) Janis, R. A.;
Triggle, D. J. J. Med. Chem. 1983, 26, 775. (c) Wehinger, E.; Gross, R.
Ann. Rep. Med. Chem. 1986, 21, 85. (d) Guengerich, F. P.; Brain, W. R.;
Iwasaki, M.; Sari, M. A.; Berntsson, P. J. Med. Chem. 1991, 34, 1838. (e)
Toniolo, R.; Narda, F. D.; Bontempelli, G.; Ursini, F. Bioelectrochem. 2000,
51, 193.
(2) (a) Mitchell, P. Science 1979, 206, 1148. (b) Michel, H.; Behr, J.;
Harrenga, A.; Kannt, A. Ann. ReV. Biophys. Biomol. Struct. 1988, 27, 329.
(c) Babcock, G. T.; Wikstrom, M. Nature 1992, 356, 301. (b) Babcock, G.
T. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 12971.
(3) Fukuzumi, S.; Koumitsu, S.; Hironaka, K.; Tanaka, T. J. Am. Chem.
Soc. 1987, 109, 305.
(4) (a) Stout, D. M.; Meyers, A. I. Chem. ReV. 1982, 82, 223. (b) Lavilla,
R. J. Chem. Soc., Perkin Trans. 1 2002, 1141.
(11) (a) Han, B.; Liu, Q.; Liu, Z.; Mu, R.; Zhang, W.; Liu, Z.-L.; Yu,
W. Synlett 2005, 2333. (b) Han, B.; Liu, Z.; Liu, Q.; Yang, L.; Liu, Z.-L.;
Yu, W. Tetrahedron 2006, 62, 2492.
10.1021/jo701796n CCC: $37.00 © 2007 American Chemical Society
Published on Web 10/05/2007
8608
J. Org. Chem. 2007, 72, 8608-8610