Copper-Catalyzed Tethered Aziridination of Unsaturated
N-Tosyloxy Carbamates
Renmao Liu, Steven R. Herron, and Steven A. Fleming*
Department of Chemistry, Brigham Young UniVersity, ProVo, Utah 84602
ReceiVed March 9, 2007
Aziridines were formed by copper-catalyzed intramolecular nitrene addition to alkenes. The carbamate
group was used as the tether between the alkene and the nitrene. Subsequent nucleophilic attack of the
-
aziridine was accomplished using RSH, R2NH, N3 , or ROH as the nucleophile. This addition was found
to be regio- and stereoselective. This methodology has been used to demonstrate its utility in the regio-
and stereoselective synthesis of a 1,2-diamino-3-hydroxycyclohexane. This substitution pattern is found
in natural products such as Tamiflu.
Introduction
stoichiometric amount of iodobenzene. Recently, Lebel et al.
have reported a highly efficient method using rhodium catalysis
for nitrenes which undergo C-H insertion to give amines or
alkene addition to give aziridines.4 They used N-tosyloxy
derivatives of carbamates as nitrene sources, thus avoiding
addition of hypervalent iodine reagents which generate iodo-
benzene. More recently, Donohoe et al. successfully employed
these carbamates as reoxidants for the aminohydroxylation
reaction under conditions more convenient and mild than
traditional methods.5 Our interest is to investigate copper
complexes as catalysts in this new aziridination reaction since
copper complexes are readily available and have shown high
efficiency in previous aziridination applications. We describe
here the copper-catalyzed version of this process and, in
particular, report the regio- and stereoselective nucleophilic
opening of these bicyclic fused aziridines.
Remarkable advances have been made in methods for
aziridination using transition-metal-catalyzed nitrene addition
to olefins during the past decade.1-3 One efficient process makes
use of N-arene sulfonyl iminoiodinanes as the nitrene source.3a
Other alternative nitrogen sources include carbamate esters,3b,c
sulfamate esters,3d,e and sulfonamides2e,3g in combination with
hypervalent iodine reagents. However, one of the major
drawbacks of these particular routes is the formation of a
(1) Reviews: (a) Espino, C. G.; Du Bois J. In Modern Rhodium-
Catalyzed Organic Reactions; Evans, P. A., Ed.; Wiley-VCH: Weinheim,
Germany, 2005: Chapter 17, pp 379-416. (b) Hafen, J. A. Curr. Org.
Chem. 2005, 9, 657. (c) Watson, I. D. G.; Yu, L.; Yudin, A. K. Acc. Chem.
Res. 2006, 39, 194. (d) Mueller, P.; Fruit, C. Chem. ReV. 2003, 103, 2905.
(2) For representative references, see: (a) Evans, D. A.; Faul, M. M.;
Bilodeau, M. T. J. Am. Chem. Soc. 1994, 116, 2742. (b) Du Bois, J.; Hong,
J.; Carreira, E. M.; Day, M. W. J. Am. Chem. Soc. 1996, 118, 915. (c) Au,
S.-M.; Huang, J.-S.; Yu, W.-Y.; Fung, W.-H.; Che, C.-M. J. Am. Chem.
Soc. 1999, 121, 9120. (d) Brandt, P.; So¨dergren, M. J.; Andersson, P. G.;
Norrby, P.-O. J. Am. Chem. Soc. 2000, 122, 8013. (e) Dauban, P.; Sanie`re,
L.; Tarrade, A.; Dodd, R. H. J. Am. Chem. Soc. 2001, 123, 7707. (f) Cui,
Y.; He, C. J. Am. Chem. Soc. 2003, 125, 16202. (g) Man, W.-L.; Lam, W.
W. Y.; Yiu, S.-M.; Lau, T.-C.; Peng, S.-M. J. Am. Chem. Soc. 2004, 126,
15336. (h) Catino, A. J.; Nichols, J. M.; Forslund, R. E.; Doyle, M. P. Org.
Lett. 2005, 7, 2787. (i) Li, Z.; Ding, X.; He, C. J. Org. Chem. 2006, 71,
5876.
Results and Discussion
The starting N-sulfonyloxy carbamates were prepared from
the corresponding alcohols in a good yield using a known two-
pot procedure, as shown in Scheme 1 (CDI ) 1,1′-carbonyl
diimidazole).
(3) (a) Li, Z.; Quan, R. W.; Jacobsen, E. N. J. Am. Chem. Soc. 1995,
117, 5889. (b) Levites-Agababa, E.; Menhaji, E.; Perlson, L. N.; Rojas, C.
M. Org. Lett. 2002, 4, 863. (c) Padwa, A.; Stengel, T. Org. Lett. 2002, 4,
2137. (d) Guthikonda, K.; Du Bois, J. J. Am. Chem. Soc. 2002, 124, 13672.
(e) Duran, F.; Leman, L.; Ghini, A.; Burton, G.; Dauban, P.; Dodd, R. H.
Org. Lett. 2002, 4, 2481. (f) Liang, J.-L.; Yuan, S.-X.; Chan, P. W. H.;
Che, C.-M. Org. Lett. 2002, 4, 4507.
(4) (a) Lebel, H.; Huard, K.; Lectard, S. J. Am. Chem. Soc. 2005, 127,
14198. (b) Lebel, H.; Leogane, O.; Huard, K.; Lectard, S. Pure Appl. Chem.
2006, 78, 363.
(5) Donohoe, T. J.; Chughtai, M. J.; Klauber, D. J.; Griffin, D.; Campbell,
A. D. J. Am. Chem. Soc. 2006, 128, 2514.
10.1021/jo0705014 CCC: $37.00 © 2007 American Chemical Society
Published on Web 06/27/2007
J. Org. Chem. 2007, 72, 5587-5591
5587