X. Li et al. / Tetrahedron Letters 48 (2007) 6044–6047
6047
˚
Matsuo, M.; Irie, M. Chem. Lett. 2001, 436–437; (c)
Matsuda, K.; Irie, M. J. Am. Chem. Soc. 2000, 122, 7195–
7201; (d) Matsuda, K.; Irie, M. J. Am. Chem. Soc. 2000,
122, 8309–8310; (e) Kaneko, T.; Akutsu, H.; Yamada, J.;
Nakatsuji, S. Org. Lett. 2003, 5, 2127–2129; (f) Kikuchi,
A.; Iyoda, T. J. Abe Chem. Commun. 2002, 1484–1485; (g)
Teki, Y.; Miyamoto, S.; Nakatsuji, M.; Miura, Y. J. Am.
Chem. Soc. 2001, 123, 294–305; (h) Kurata, H.; Takehara,
Y.; Kawase, T.; Oda, M. Chem. Lett. 2003, 538–539.
4. (a) Frank, N. L.; Clerac, R.; Sutter, J.-P.; Daro, N.; Kahn,
O.; Coulon, C.; Green, M. T.; Golhen, S.; Ouahab, L. J.
Am. Chem. Soc. 2000, 122, 2053–2061; (b) Nakatsuji, S.;
Ikemoto, H.; Akutsu, H.; Yamada, J.-I.; Mori, A. J. Org.
Chem. 2003, 68, 1708–1714; (c) Greve, S.; Nather, C.;
Friedrichsen, W. Org. Lett. 2000, 2, 2269–2270.
5. (a) Xu, L.-L.; Huang, H.-M.; Song, Z.-Y.; Meng, J.-B.;
Matsuura, T. Tetrahedron Lett. 2002, 43, 7435–7439; (b)
Xu, L.-L.; Sugiyama, T.; Huang, H.-M.; Song, Z.-Y.;
Meng, J.-B.; Matsuura, T. Chem. Commun. 2002, 2328–
2329; (c) Li, X.; Xu, L.-L.; Han, J.; Pang, M.-L.; Ma, H.;
Meng, J.-B. Tetrahedron 2005, 61, 5373–5377; (d) Li, X.;
Song, Z.-Y.; Chen, Y.; Meng, J.-B. J. Mol. Struct. 2005,
748, 161–164; (e) Xu, L.-L.; Meng, J.-B.; Wang, H.; Li, P.;
Sugiyama, T.; Wang, Y. M.; Matsuura, T. Mol. Cryst.
Liq. Cryst. 2002, 389, 33–37; (f) Chen, Y.; Pang, M.-L.;
Cheng, K.-G.; Wang, Y.; Han, J.; He, Z.-J.; Meng, J.-B.
Tetrahedron 2007, 63, 4319–4327; (g) Han, J.; Li, Y.-X.;
Pang, M.-L.; Cheng, K.-G.; Wang, Y.-M.; Ma, Y.-X.;
Meng, J.-B. New J. Chem. 2007, 31, 543–548; (h) Tanaka,
K.; Toda, F.; Higuchi, T. Mol. Cryst. Liq. Cryst. 1992,
219, 135–137; (i) Tanaka, K.; Toda, F. J. Chem. Soc.,
Perkin Trans. 1 2000, 873–874.
found to be 5.391 A for oxygen–oxygen, which is a fair
distance as to allow only weak antiferromagnetic inter-
action between the spins.10 According to the McConnell
mechanism,11 the relative signs of the spin densities on
those oxygen atoms are opposite to each other, which
leads to the intermolecular antiferromagnetic result.
On the other hand, the shortest distance between the
˚
adjacent molecular carbonyl oxygen atoms is 6.923 A,
which is too long for any possible interaction.
In conclusion, we have first synthesized a novel biinde-
nylidene derivative having two TEMPO radicals in the
molecule, and studied its photochromism and photo-
magnetism in the crystalline state. ESR results clearly
show that two kinds of radicals exist in the crystalline
molecule 4, and the radical generated from two indani-
one moieties is photo-responsive. Incorporation of
organic photochromism into magnetic system may not
only lead to interesting photochromic behaviors, but
may also provide a new strategy to develop photo-con-
trol magnetic materials. Herein we have made a small
step in the direction. Further detailed studies of the
mechanism of photomagnetism of 4 are in progress in
our laboratory.
Acknowledgement
This work was financially supported by grants from the
National Natural Science Foundation of China (Nos.
20490210, 20372039).
6. The ESR test was carried out on a Bruker EMX-6/1 EPR
Spectrometer. The g value was calculated by the known
parameters of g3 and g4 of Mn-mark. X-band EPR spectra
were obtained at room temperature. Measurement condi-
tions: center field 3510.000 G, sweep width 600.000 G,
modulation frequency 100.00 kHz, modulation amplitude
0.50 G, and microwave frequency 9.854 GHz.
7. Measurement conditions: center field 3510.000 G, sweep
width 200.000 G, modulation frequency 100.00 kHz, mod-
ulation amplitude, 0.50 G, and microwave frequency
9.854 GHz.
Supplementary data
Supplementary data associated with this article can be
8. Kaneko, T.; Akutusu, H.; Yamada, J.-I.; Nakatsuji, S.
Org. Lett. 2003, 5, 2127–2129.
References and notes
9. Crystal data for 4: C26H29C12N2O3, M = 488.41, mono-
clinic, space group P2(1)/c, a = 8.5321(13), b = 29.469(5),
1. Nakatsuji, S. Adv. Mater. 2001, 13, 1719–1724.
2. (a) Irie, M. Chem. Rev. 2000, 100, 1685–1716; (b)
Matsuda, K. Bull. Chem. Soc. Jpn. 2005, 78, 383–392;
(c) Matsuda, K.; Matsuo, M.; Mizoguti, S.; Higashiguchi,
K.; Irie, M. J. Phys. Chem. B 2002, 106, 11218–11225; (d)
Benard, S.; Riviere, E.; Yu, P. Chem. Mater. 2001, 13,
159–162; (e) Tanifuji, M.; Irie, M.; Matsuda, K. J. Am.
Chem. Soc. 2005, 127, 13344–13353.
˚
c = 10.2948(16) A, b = 105.032(3)ꢁ, T = 294(2) K, Dc =
3
1.298 g cmÀ3
,
V = 2499.9(7) A , crystal size = 0.22 ·
˚
0.18 · 0.14 mm, Z = 4, F(000) = 1028, l = 0.290 mmÀ1
12,693 Reflections collected, 4401 unique (Rint = 0.0678),
The final R1 = 0.0545, wR2 = 0.1201 and for all data
R1 = 0.1316, wR2 = 0.1592, CCDC 287993.
,
10. Nakatsuji, S.; Ojima, T.; Akutsu, H.; Yamada, J.-I. J.
Org. Chem. 2002, 67, 916–921.
11. McConnell, H. M. J. Chem. Phys. 1963, 39, 1910–1923.
3. (a) Hamachi, K.; Matsuda, K.; Itoh, T.; Iwamura, H. Bull.
Chem. Soc. Jpn. 1998, 71, 2937–2943; (b) Matsuda, K.;