Journal of the American Chemical Society
Page 4 of 5
product mixture. It should be noted, that the β-alkylation
Thomas Dietel for X-ray crystal structure analysis and Rainer
1
2
3
4
5
6
7
8
reaction can either be run in a pressurized tube or in an open
system (reflux condenser). In no case, a product with a C=C
bond was observed (GC-MS monitoring). Next, the addition
of a solution of benzamidine and benzyl alcohol was investi-
gated and tert-amyl alcohol (2 mL/mmol amidine) turned
out to be optimal as the solvent. A base screening indicated,
that t-BuOK is most efficient, as is catalyst A in 1-2 mol%
loading. With these reaction conditions in hand, we started
exploring the substrate scope of the consecutive 4-
component reaction (Table 4). First, the “N-C-N” substituent
was varied. Aryl (6a), alkyl (6b) and an amino function (6c,
from guanidine) can be introduced in this position. Second,
the substituent at the 4-position was varied by employing
different 1-substituted ethanol derivatives which, in addition
to this substituent, contribute two carbon atoms to the py-
rimidine ring (for numbering, see Table 4, top right). Aro-
matic (6d,e) as well as aliphatic substituents (6f) were toler-
ated. Third, different primary alcohols were used in the first
reaction as a source of the respective residues at the 5-
position (6g-j). Notably, the use of methanol gave rise to a
primary quasi-benzylic functional group at the pyrimidine in
5-position which is interesting for further functionalization
reactions. Fourth, the remaining substituent at C-6, which is
introduced with the primary alcohol added last, was varied.
Aliphatic (Cy = cyclohexyl, 6k) and (hetero)aromatic (6l-n)
substituents can be introduced. Based on the examples listed
in Table 4, and the modular synthesis concept of the consec-
utive 4-component reaction, a virtual library of more than
300 compounds (5x4x4x4-doublings) has been created.
Schobert for helpful discussions.
REFERENCES
(1) Tuck, C. O.; Perez, E.; Horvath, I. T.; Sheldon, R. A.; Poliakoff, M.
Science 2012, 337, 695-699.
(2) (a) Vispute, T. P.; Zhang, H.; Sanna, A.; Xiao, R.; Huber, G. W.
Science 2010, 330, 1222-1227. (b) Besson, M.; Gallezot, P.; Pinel, C.
Chem. Rev. 2014, 114, 1827-1870.
(3) Michlick, S.; Kempe R. Nat. Chem. 2013, 5, 140-144.
(4) Joule, J. A., Mills, K. in Heterocyclic Chemistry, 5th ed. (Wiley,
Chichester, UK, 2010).
(5) (a) Srimani, D.; Ben-David, Y.; Milstein, D. Angew. Chem. Int. Ed.
2013, 52, 4012-4015. (b) Iida, K.; Miura, T.; Ando, J.; Saito, S. Org. Lett.
2013, 15, 1436-1439.
(6) The reported pyrrole synthesis is based on contributions by Ishii
and Crabtree: (a) Taguchi, K.; Sakaguchi, S.; Ishii, Y. Tetrahedron
Lett. 2005, 46, 4539-4542. (b) Schley, N. D.; Dobereiner, G. E.;
Crabtree, R. H. Organometallics 2011, 30, 4174-4179.
(7) (a) Michlik, S.; Kempe, R. Angew. Chem. Int. Ed. 2013, 52, 6326-
6329. (b) Srimani, D.; Ben-David, Y.; Milstein, D. Chem. Commun.
2013, 49, 6632-6634. (c) Ruch, S.; Irrgang, T.; Kempe, R. Chem. Eur. J.
2014, 20, 13279-13285.
(8) (a) Zhang, M.; Neumann, H.; Beller, M. Angew. Chem. Int. Ed.
2013, 52, 597-601. (b) Zhang, M.; Fang, X.; Neumann, H.; Beller, M. J.
Am. Chem. Soc. 2013, 135, 11384-11388.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(9) Schranck, J.; Tlili, A.; Beller, M. Angew. Chem. Int. Ed. 2013, 52,
7642-7644.
(10) For recent reviews on multicomponent synthesis of heterocycles,
see: (a) D'Souza, D. M.; Müller, T. J. Chem. Soc. Rev. 2007, 36, 1095-
1108. (b) Balme, G.; Bouyssi, D.; Monteiro, N. Heterocycles 2007, 73,
87-124. (c) Arndtsen, B. A. Chem. Eur. J. 2009, 15, 302-313. (d) Estevez,
V.; Villacampa, M.; Menendez, J. C. Chem. Soc. Rev. 2010, 39, 4402-
4421. (e) Jiang, B.; Rajale, T.; Wever, W.; Tu, S. J.; Li, G. Chem. Asian.
J. 2010, 5, 2318-2335. (f) Estevez, V.; Villacampa, M.; Menendez, J. C.
Chem. Soc. Rev. 2014, 43, 4633-4657. (g) Allais, C.; Grassot, J.-M.;
Rodriguez, J.; Constantieux, T. Chem. Rev. 2014, 114, 10829-10868.
(11) Gulevich, A. V.; Dudnik, A. S.; Chernyak, N.; Gevorgyan, V.
Chem. Rev. 2013, 113, 3084-3213.
(12) For selected examples please see: (a) Oishi, T.; Yamaguchi, K.;
Mizuno, N. Angew. Chem. Int. Ed. 2009, 48, 6286-6288. (b) Yamagu-
chi, K.; He, J.; Oishi, T.; Mizuno, N. Chem. Eur. J. 2010, 16, 7199-7207.
(c) Dornan, L. M.; Cao, Q.; Flanagan, J. C. A.; Crawford, J. J.; Cook,
M. J.; Muldoon, M. J. Chem. Commun. 2013, 49, 6030-6032. (d) Kim,
J.; Stahl, S. S. ACS Catal. 2013, 3, 1652-1656. (e) Yin, W.; Wang, C.;
Huang, Y. Org. Lett. 2013, 15, 1850-1853. (f) Dighe, S. U.; Chowdhury,
D.; Batra, S. Adv. Synth. Catal. 2014, 356, 3892-3896. (g) Jagadeesh, R.
V.; Junge, H.; Beller, M. Nat. Commun. 2014, 5, 1-8.
(13) For selected reviews on C-alkylation by alcohols, see: (a) Guille-
na, G.; Ramon, D. J.; Yus, M. Angew. Chem. Int. Ed. 2007, 46, 2358-
2364. (b) Hamid, M. H. S. A.; Slatford, P. A.; Williams, J. M. J. Adv.
Synth. Catal. 2007, 349, 1555-1575. (c) Nixon, T. D.; Whittlesey, M. K.;
Williams, J. M. Dalton Trans. 2009, 753-762. (d) Dobereiner, G. E.;
Crabtree, R. H. Chem. Rev. 2010, 110, 681-703. (e) Yamaguchi, R.;
Fujita, K.-i.; Zhu, M. Heterocycles 2010, 81, 1093-1140. (f) Ishii, Y.;
Obora, Y. Synlett 2010, 2011, 30-51. (g) Alonso, F.; Riente, P.; Yus, M.
Acc. Chem. Res. 2011, 44, 379-391. (h) Suzuki, T. Chem. Rev. 2011, 111,
1825-1845. (i) Obora, Y. ACS Catal. 2014, 4, 3972-3981. (j) Shimizu, K.-
I. Catal. Sci. Technol. 2015, 5, 1412-1427. (k) Gunanathan, C.; Milstein,
D. Science 2013, 341, 1229712.
In summary, we introduced a novel sustainable multi-
component pyrimidine synthesis. Alcohols and amidines can
be assembled in 3- or consecutive 4-component reactions.
The selective C-C and C-N bond formations proceed with the
liberation of two equivalents of dihydrogen (acceptor-less
dehydrogenation) and the elimination of water (condensa-
tion). Unsymmetrically and fully substituted pyrimidines are
accessible. The synthesis protocol is especially useful in
forming selectively alkylated and/or arylated pyrimidines.
The synthesis of 4-(4-fluorophenyl)-6-isopropylpyrimidin-2-
amine underlines the applicability of the novel reactions to
the synthesis of important pharmaceuticals. The Ir catalyst
used and the optimized reaction conditions allow the pres-
ence of a wide range of typical organic functional groups.
ASSOCIATED CONTENT
Supporting Information
Experimental procedures, spectroscopic and crystallographic
data. This material is available free of charge via the Internet
AUTHOR INFORMATION
Corresponding Author
(14) Shen, D.; Poole, D. L.; Shotton, C. C.; Kornahrens, A. F.; Healy,
M. P.; Donohoe, T. J. Angew. Chem. Int. Ed. 2015, 54, 1642-1645.
(15) Blank, B.; Kempe, R. J. Am. Chem. Soc. 2010, 132, 924-925.
*kempe@uni-bayreuth.de
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
We thank the Deutsche Forschungsgemeinschaft, DFG, KE
756/23-2, for financial support, Mikhail Butovskii as well as
ACS Paragon Plus Environment