Chemistry Letters 2002
515
3 h and then to 20 ꢁC after 2 h, and the stirring was continued for
24 h. After the addition of EtOH (50 ml) and sat. aq NaCl solution
(1.2 L) containing Na2S2O3, the mixture was extracted with
toluene (3 ꢂ 800 ml). The organic layer was dried over Na2SO4
and concentrated to about 100 ml under reduced pressure. The
residue was subjected to flash column chromatography on silica
gel (230 g) using EtOAc–toluene and EtOH–EtOAc as eluents.
The desired product 6ꢁ was obtained as white foam (18.6 g, 79%)
from 5% (v/v) EtOH–EtOAc eluates.
Compared with the tosylate, alcohol 4ꢁ may be a less
versatile intermediate but has an advantage in the SN2 reaction
site; that is, the alkoxyl oxygen atom of 4ꢁ locates at an outer or
less-hindered site from the CD framework than the carbon atom
bearing the tosyl group of 6ꢁ. The tosylate was converted to 4ꢁ
according to reductive detosylation with sodium naphthalenide13
as follows.
To a solution of naphthalene (7.32 g, 57.1 mmol) in dry THF
(100 ml), sodium (1.22 g, 53.0 mmol) was added and the mixture
was stirred at rt for 3 h. The resulting deep blue solution of sodium
naphthalenide was cooled in a dry ice-acetone bath, and a solution
of 6ꢁ (12.2 g, 8.94 mmol) in dry THF (73 ml) was then added at
such a rate that the temperature was maintained below ꢃ65 ꢁC.
After the addition, the reaction mixture was allowed to stir for
80 min, neutralized with 3N HCl in the bath, and concentrated to
dryness under reduced pressure. The residue was subjected to
flash column chromatography on silica gel (120 g) using EtOAc–
toluene and EtOH–EtOAc as eluents. The desired product 4ꢁ was
obtained as white powder (9.10 g, 84.0%) from 10% (v/v) EtOH–
EtOAc eluates.
P. Forgo, K. J. Stine, and V. T. D’Souza, Chem. Rev., 98, 1977
(1998). d) C. J. Easton and S. F. Lincoln, ‘‘Modified
Cyclodextrins,’’ Imperial College Press, London (1999).
J. Szejtli, A. Liptak, I. Jodal, P. Fugedi, P. Nanasi, and A.
Neszmelyi, Starch, 32, S 165 (1980).
a) J. H. Jung, C. Takehisa, Y. Sakata, and T. Kaneda, Chem.
Lett., 1996, 147. b) T. Fujimoto, Y. Uejima, H. Imaki, J. H.
Jung, Y. Sakata, and T. Kaneda, Chem. Lett., 2000, 564. c) T.
Fujimoto, Y. Sakata, and T. Kaneda, Chem. Lett., 2000, 764.
d) T. Fujimoto, Y. Sakata, and T. Kaneda, Chem. Commun.,
2000, 2143. e) T. Fujimoto, A. Nakamura, Y. Inoue, Y.
Sakata, and T. Kaneda, Tetrahedron Lett., 42, 7987 (2001). f)
T. Kaneda, T. Yamada, T. Fujimoto, and Y. Sakata, Chem.
Lett., 2001, 1264.
M. Tanaka, Y. Kawaguchi, T. Niinae, and T. Shono, J.
Chromatogr., 314, 193 (1984). The overall yields, the scale of
the experiments, and the characterizations were not provided.
G. Yi, J. S. Bradshaw, B. E. Rossiter, and A. Malik, J. Org.
Chem., 58, 4844 (1993).
Z. Chem, J. S. Bradshaw, and M. L. Lee, Tetrahedron Lett.,
37, 6831 (1996).
N. Lupescu, C. K. Y. Ho, G. Jia, and J. J. Krepinsky, J.
Carbohyd. Chem., 18, 99 (1999).
4
5
6
7
8
9
10 J. H. Jung, K. Asano, T. Sugimoto, C. Hosono, Y. Sakata, and
T. Kaneda, unpublished work.
11 N. Kornblum, W. J. Jones, and G. J. Anderson, J. Am. Chem.
Soc., 81, 4113 (1959).
12 D. Melton and K. N. Slessor, Carbohydr. Res., 18, 29 (1971).
13 H. C. Jarrell, R. G. S. Ritchie, W. A. Szarek, and J. K. N. Jones,
Can. J. Chem., 51, 1767 (1973).
Similarly, 4ꢀ (4.28 g, 76.0%), 4ꢂ14 (4.45 g, 89.5%), 6ꢀ
(15.2 g, 79.6%), and 6ꢂ14 (6.79 g, 69.6%) were obtained from 6ꢀ
(5.00 g), 6ꢂ (5.44 g), 5ꢀ15 (16.7 g), and 5ꢂ16 (8.00 g), respec-
tively.
In conclusion, we have demonstrated new practical prepara-
tions of versatile starting materials 4 and 6 for non-hydrophilic
CD derivatives. The present permethylation technique with a
NaH-MeI combination is applicable to other polyhydroxy
compounds with NaI-susceptible substituents.
14 4ꢂ: white foam, mp 114–117 ꢁC. Anal. Found: C, 51.84; H,
7.94%. Calcd for C71H126O40ꢄH2O: C, 52.07; H, 7.88%.
TOFMS (m=z) 1641 [MþNa]þ. 1H NMR(270 MHz, CDCl 3):
ꢃ 5.32 (t, J ¼ 3:4 Hz, 2H, H1), 5.25 (d, J ¼ 3:2 Hz, 1H, H1),
5.22–5.18 (m, 4H, H1), 5.12 (d, J ¼ 3:2 Hz, 1H, H1), 4.0–3.2
(m, 117H), 2.80 (bt, J ¼ 6:1 Hz, 1H, OH). 6ꢂ: white foam, mp
102–105 ꢁC. Anal. Found: C, 52.55; H, 7.49; S, 1.79%. Calcd
for C78H132O42SꢄH2O: C, 52.28; H, 7.54; S, 1.79%. TOFMS
(m=z) 1795 [MþNa]þ. 1H NMR(270 MHz, CDCl ): ꢃ 7.77
3
We are indebted to Nihon Shokuhin Kako Co. Ltd., Mercian
Corporation, and Wacker Chemicals East Asia Ltd. for generous
gifts of ꢀ-, ꢁ-, and ꢂ-CDs, respectively. T.K. also thanks the
Ministry of Education, Science, Sports, and Culture of Japan for
its Grant-in-Aid for Scientific Research (C) (No. 11640582)
which provided financial support of this work.
(d, J ¼ 8:2 Hz, 2H, OTs), 7.34 (d, J ¼ 8:2 Hz, 2H, OTs), 5.3–
5.2 (m, 6H, CD-H1), 5.10 (d, J ¼ 3:5 Hz, 1H, H1), 5.07 (d,
J ¼ 3:2 Hz, 1H, H1), 4.52 (d, J ¼ 9:5 Hz, 1H, CH2OTs), 4.16
(dd, J ¼ 9:5, 6.5 Hz, 1H, CH2OTs), 3.9–3.1 (m, 114H), 3.04
(dd, J ¼ 9:6, 3.1 Hz, 1H), 2.45 (s, 3H, OTs).
15 a) Y. Matsui and A. Okimoto, Bull. Chem. Soc. Jpn., 51, 3030
(1971). b) S. Onozuka, M. Kojima, K. Hattori, and F. Toda,
Bull. Chem. Soc. Jpn., 53, 3221 (1980). c) S. Onozuka, M.
Kojima, K. Hattori, and F. Toda, Tetrahedron Lett., 23, 3451
(1982). d) N. Zhong, H.-S. Byun, and R. Bittman, Tetra-
hedron Lett., 39, 2919 (1998). e) B. Brady, N. Lynam, T.
O’Sullivan, C. Ahern, and R. Darcy, Org. Synth., 77, 220
(2000). f) H.-S. Byun, N. Zhong, and R. Bittman, Org. Synth.,
77, 225 (2000).
References and Notes
1
For a review: R. Breslow and S. D. Dong, Chem. Rev., 98,
1997 (1998).
2
3
For a review: A. Harada, Acc. Chem. Res., 34, 456 (2001).
For reviews, see: a) A. P. Croft and R. A. Bartsch,
Tetrahedron, 39, 1417 (1983). b) L. Jicsinszky, E. Fenyvesi,
H. Hashimoto, and A. Ueno, ‘‘Cyclodextrin Derivatives,’’ in
‘‘Comprehensive Supramolecular Chemistry,’’ ed. by J. L.
16 a) K. Takahashi and K. Hattori, J. Incl. Phenom., 2, 661
(1984). b) K. Fujita, T. Tahara, T. Imoto, and T. Koga, Chem.
Lett., 1988, 1329.
Atwood, J. E. D. Davies, D. D. MacNicol, F. Vogtle, and J.-M.
¨
Lehn, Pergamon, Oxford (1996), Vol. 3, p 57. c) A. R. Khan,