Page 9 of 10
The Journal of Organic Chemistry
23. Tang, N.; Wu, X.; Zhu, C.; Practical, Metal-free Remote Het-
Supercomputer Center (Italy), with computer time granted by
eroarylation of Amides via Unactivated C(sp3)–H Bond Functionaliza-
tion. Chem. Sci. 2019, 10, 6915-6919.
24. Minisci, F.; Vismara, E.; Fontana, F.; Platone, E.; Faraci, G. J.
Selective Aromatic Chlorination and Bromination with N-
Halogenoamines in Acidic Solution. Chem. Soc. Perkin Trans. 2 1989, 2,
123–126.
1
2
3
4
ISCRA projects (code: HP10C30YAJ).
REFERENCES
1. White, M. C. Adding Aliphatic C–H Bonds to Synthesis. Science
2012, 335, 807–809.
5
2. Newhouse, T.; Baran, P. S. If C–H Bonds Could Talk: Selective
C–H Bond Oxidation. Angew. Chem. Int. Ed. 2011, 50, 3362–3374.
3. Yamaguchi, J.; Yamaguchi, A. D.; Itami, K. C–H Bond Func-
tionalization: Emerging Synthetic Tools for Natural Products and
Pharmaceuticals. Angew. Chem. Int. Ed. 2012, 51, 8960–9009.
4. Cernak, T.; Dykstra, K. D.; Tyagarajan, S.; Vachal, P.; Krska, S.
W. The Medicinal Chemist's Toolbox for Late Stage Functionalization
of Drug-Like Molecules. Chem. Soc. Rev. 2016, 45, 546–576.
5. Hofmann, A. W. Zur Kenntniss des Piperidins und Pyridins.
Berichte Dtsch. Chem. Ges. 1879, 12, 984–990.
6. Zard, S. Z. Recent Progress in the Generation and Use of Nitro-
gen-Centered Radicals. Chem. Soc. Rev. 2008, 37, 1603–1618.
7. Stateman, L. M.; Nakafuku, K. M.; Nagib, D. Remote C–H
Functionalization via Selective Hydrogen Atom Transfer. A. Synthesis
2018, 50, 1569–1586.
8. Majetich, G.; Wheless, K. Remote Intramolecular Free Radical
Functionalizations: An Update. Tetrahedron 1995, 51, 7095–7129.
9. Hernández, R.; Rivera, A.; Salazar, J. A.; Suárez, E. Nitroamine
Radicals as Intermediates in the Functionalization of Non-activated
Carbon Atoms. J. Chem. Soc. Chem. Commun. 1980, 958–959.
10. Zalatan, D. N.; Du Bois, J. Oxidative Cyclization of Sulfamate
Esters Using NaOCl – A Metal-Mediated Hoffman–Loffler–Freytag
Reaction. Synlett 2009, 1, 143–146.
11. Du Bois, J. Rhodium-Catalyzed C–H Amination. An Enabling
Method for Chemical Synthesis. Org. Process Res. Dev. 2011, 15, 758–
762.
12. Wappes, E. A.; Fosu, S. C.; Chopko, T. C.; Nagib, D. A. Triio-
dide-Mediated Amination of Secondary C–H Bonds. Angew. Chem.
Int. Ed. 2016, 55, 9974–9978.
13. Chen, K.; Baran, P. S. Total Synthesis of Eudesmane Terpenes
by Site-Selective C–H Oxidations. Nature 2009, 459, 824–828.
14. Petterson, R. C.; Wambsgans, A. Photochemical Rearrangement
of N-Chloroimides to 4-Chloroimides. A New Synthesis of -Lactones.
J. Am. Chem. Soc. 1964, 86, 1648–1649.
15. Kerwin, J. F.; Wolff, M. E.; Owings, F. F.; Lewis, B. B.; Blank,
B.; Magnani, A.; Karash, C.; Georgian, V. The Synthesis of C-18 Func-
tionalized Steroid Hormone Analogs. II. Preparation and Some Reac-
tions of 18-Chloro Steroids. J. Org. Chem. 1962, 27, 3628–3639.
16. Chow, Y. L.; Joseph, T. C. Selectivity of intramolecular hydro-
gen transfer in the free amido-radical. J. Chem. Soc. Chem. Commun.
1969, 9, 490–491.
6
7
8
9
25. Johnson, R. A.; Greene, F. D. Chlorination with N-Chloro
Amides. II. Selectivity of Hydrogen Abstraction by Amidyl Radicals. J.
Org. Chem. 1975, 40, 2192–2196.
26. Deno, N. C.; Fishbein, R.; Wyckoff, J. C. Cation Radicals. III.
Sterically Hindered Chlorinating Agents. J. Am. Chem. Soc. 1971, 93,
2065–2066.
27. Schmidt, V. A.; Quinn, R. K.; Brusoe, A. T.; Alexanian, E. J.
Site-Selective Aliphatic C–H Bromination Using N-Bromoamides and
Visible Light. J. Am. Chem. Soc. 2014, 136, 14389–14392.
28. Quinn, R. K.; Könst, Z. A.; Michalak, S. E.; Schmidt, Y.;
Szklarski, A. R.; Flores, A. R.; Nam, S.; Horne, D. A.; Vanderwal, C.
D.; Alexanian, E. J. Site-Selective Aliphatic C–H Chlorination Using
N-Chloroamides Enables a Synthesis of Chlorolissoclimide. J. Am.
Chem. Soc. 2016, 138, 696–702.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
29. Czaplyski, W. L.; Na, C. G.; Alexanian, E. J. C–H Xanthyla-
tion: A Synthetic Platform for Alkane Functionalization. J. Am. Chem.
Soc. 2016, 138, 13854–13857.
30. Carestia, A. M.; Ravelli, D.; Alexanian, E. J. Reagent-Dictated
Site Selectivity in Intermolecular Aliphatic C–H Functionalizations
Using Nitrogen-Centered Radicals. Chem. Sci. 2018, 9, 5360–5365.
31. Hioe, J.; Sakic, D.; Vrcek, V.; Zipse, H. The Stability of Nitro-
gen-Centered Radicals. Org. Biomol. Chem. 2015, 13, 157-169.
32. Šakić, D.; Zipse, H. Radical Stability as a Guideline in C–H
Amination Reactions. Adv. Synth. Catal. 2016, 358, 3983–3991.
33. Luo, Yu-Ran. Handbook of Bond Dissociation Energies in Or-
ganic Compounds. CRC Press, 2003, ISBN 0-8493-1589-1.
34. Sutcliffe, R.; Griller, D.; Lessard, J.; Ingold, K. U. The Struc-
ture of Amidyl Radicals. Evidence for the -Electronic Ground State
and for Twist about the Acyl-Nitrogen Bond by Electron Paramagnetic
Resonance Spectroscopy. J. Am. Chem. Soc. 1981, 103, 624–628.
35. Glendening, E. D.; Landis, C. R., Weinhold, F. Natural bond
orbital methods. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 1–42.
36. Crespi, S.; Simeth, N. A.; Bellisario, A.; Fagnoni, M.; König, B.
Unraveling the Thermal Isomerization Mechanisms of Heteroaryl
Azoswitches: Phenylazoindoles as Case Study. J. Phys. Chem. A 2019,
123, 1814–1823.
37. Hu, J.; Wang, J.; Nguyen, T. H.; Zheng, N. The Chemistry of
Amine Radical Cations Produced by Visible Light Photoredox Cataly-
sis. Beilstein J. Org. Chem. 2013, 9, 1977–2001.
38. Finn, M.; Friedline, R.; Suleman, N. K.; Wohl, C. J.; Tanko, J.
M. Chemistry of the t-Butoxyl Radical:ꢀ Evidence that Most Hydrogen
Abstractions from Carbon are Entropy-Controlled. J. Am. Chem. Soc.
2004, 126, 7578–7584.
39. Prosser, A. R., Banning, J. E., Rubina, M., Rubin, M. Formal
Nucleophilic Substitution of Bromocyclopropanes with Amides en
route to Conformationally Constrained β-Amino Acid Derivatives.
Org. Lett., 2010, 12, 3968–3971.
40. Frébault, F., Luparia, M., Oliveira, M. T., Goddard, R., Mau-
lide, N. A Versatile and Stereoselective Synthesis of Functionalized
Cyclobutenes. Angewandte Chemie International Edition, 2010, 49, 5672–
5676.
17. Groendyke, B. J.; AbuSalim, D. I.; Cook, S. P. Iron-Catalyzed,
Fluoroamide-Directed C–H Fluorination. J. Am. Chem. Soc. 2016, 138,
12771–12774.
18. Reddy, L. R.; Reddy, B. V. S.; Corey, E. J. Efficient Method for
Selective Introduction of Substituents as C(5) of Isoleucine and Other
-Amino Acids. Org. Lett. 2006, 8, 2819–2821.
19. Liu, T.; Mei, T.-S.; Yu, J.-Q. γ,δ,ε-C(sp3)–H Functionalization
through Directed Radical H-Abstraction. J. Am. Chem. Soc. 2015, 137,
5871–5874.
20. Choi, G. J.; Zhu, Q.; Miller, D. C.; Gu, C. J.; Knowles, R. R.
Catalytic Alkylation of Remote C–H Bonds Enabled by Proton-
Coupled Electron Transfer. Nature 2016, 539, 268–271.
21. Chu, J. C. K.; Rovis, T. Amide-Directed Photoredox-Catalysed
C–C Bond Formation at Unactivated sp3 C–H Bonds. Nature 2016,
539, 272–275.
41. Jiang, H., Liu, B., Li, Y., Wang, A., Huang, H. Synthesis of
Amides via Palladium-Catalyzed Amidation of Aryl Halides. Org. Lett.,
2011, 13, 1028–1031.
42. Yoo, W.-J., Li, C.-J. Highly Efficient Oxidative Amidation of
Aldehydes with Amine Hydrochloride Salts. J. Am. Chem. Soc., 2006,
128, 13064–13065.
22. Chen, D.-F.; Chu, J. C. K.; Rovis, T. Directed γ-C(sp3)–H Al-
kylation of Carboxylic Acid Derivatives through Visible Light Photore-
dox Catalysis. J. Am. Chem. Soc. 2017, 139, 14897–14900.
ACS Paragon Plus Environment