J. M. Xu et al./Chemical Papers 67 (10) 1262–1270 (2013)
Table 4. Substrate specificity of amidase produced by F. aquatile ZJB-09211
1269
Substrates
Relative activitya/%
Enantioselective
e.e. value/%
E-value
Tryptophan amide
Butyl amide
Isobutyramide
Acetamide
Methionin amide
Caprolactam
100.00
15.28
261.17
17.40
49.35
16.36
–
S
–
–
–
S
–
–
R
–
–
R
–
>99.9
–
–
–
99.8
–
–
60.01
–
–
>99.9
–
>200
–
–
–
>200
–
–
4.334
–
Levetiracetam
2,2-Dimethylcyclopro-panecarboxamide
2-Chloro-nicotinamide
Nicotinamide
Mandelic amide
Benzamide
12.11
–
–
–
298.25
277.66
>200
–
a) Activity for tryptophanamide corresponding to 147.86 U g−1 was taken as 100 %.
09211 can selectively hydrolyze the L-enantiomer to
produce optically active L-Trp in high yields when
fed D,L-tryptophanamide. To the best of our knowl-
edge, this is the first report on one strain of the
genus Flavobacterium producing stereospecific ami-
dase. The F. aquatile ZJB-09211 amidase exhibits
strict S-enantioselectivity (e.e. >99.9 %, E >200) for
tryptophan amides. Under optimized culture condi-
tions, enzyme production reaches 501.5 U L−1, an
activity that is by about six times higher than that
achieved before optimization. Our results indicate that
this strain has great potential for L-Trp production in
scientific and industrial applications.
Applied Microbiology and Biotechnology, 69, 615–626. DOI:
10.1007/s00253-005-0252-y.
Jakoby, W. B., & Fredericks, J. (1964). Reactions catalyzed
by amidases: ACETAMIDASE. Journal of Biological Chem-
istry, 239, 1978–1982.
Katsumata, R., & Ikeda, M. (1993). Hyperproduction of trypto-
phan in Corynebacterium glutamicum by pathway engineer-
ing. Nature Biotechnology, 11, 921–925. DOI: 10.1038/nbt
0893-921.
¨
Ko¸caba, P., C¸alık, P., & Ozdamar, T. H. (2006). Fermen-
tation characteristics of L-tryptophan production by ther-
moacidophilic Bacillus acidocaldarius in a defined medium.
Enzyme and Microbial Technology, 39, 1077–1088. DOI:
10.1016/j.enzmictec.2006.02.012.
Komeda, H., & Asano, Y. (2008). A novel D-stereoselective
amino acid amidase from Brevibacterium iodinum: Gene
cloning, expression and characterization. Enzyme and Micro-
bial Technology, 43, 276–283. DOI: 10.1016/j.enzmictec.2008.
03.008.
Acknowledgements. This work was supported by the Nat-
ural Scientific Foundation of the Zhejiang Province (No.
Y3110391).
Martinkova, L., & Mylerova, V. (2003). Synthetic applications
of nitrile-converting enzymes. Current Organic Chemistry, 7,
1279–1295. DOI: 10.2174/1385272033486486.
Mateus, D. M. R., Alves, S. S., & da Fonseca, M. M. R. (2004).
Kinetics of L-tryptophan production from indole and L-serine
catalyzed by whole cells with tryptophanase activity. Jour-
nal of Bioscience and Bioengineering, 97, 289–293. DOI:
10.1016/s1389-1723(04)70207-8.
References
¨
Ac¸ıkel, U., Er¸san, M., & A¸cıkel, Y. S. (2010). Optimiza-
tion of critical medium components using response sur-
face methodology for lipase production by Rhizopus dele-
mar. Food and Bioproducts Processing, 88, 31–39. DOI:
10.1016/j.fbp.2009.08.003.
Shaw, N. M., Robins, K. T., & Kiener, A. (2003). Lonza: 20
years of biotransformations. Advanced Synthesis & Catalysis,
345, 425–435. DOI: 10.1002/adsc.200390049.
Shigematsu, T., Yumihara, K., Ueda, Y., Numaguchi, M.,
Morimura, S., & Kida, K. (2003). Delftia tsuruhatensis
Asano, Y., & Yamaguchi, S. (2005a). Dynamic kinetic resolu-
tion of amino acid amide catalyzed by D-aminopeptidase and
α-amino-ε-caprolactam racemase. Journal of the American
Chemical Society, 127, 7696–7697. DOI: 10.1021/ja050300m.
Asano, Y., & Yamaguchi, S. (2005b). Discovery of amino acid
amides as new substrates for α-amino-ε-caprolactam race-
mase from Achromobacter obae. Journal of Molecular Catal-
ysis B: Enzymatic, 36, 22–29. DOI: 10.1016/j.molcatb.2005.
07.003.
sp. nov.,
a terephthalate-assimilating bacterium isolated
from activated sludge. International Journal of System-
atic and Evolutionary Microbiology, 53, 1479–1483. DOI:
10.1099/ijs.0.02285-0.
Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994).
CLUSTAL W: improving the sensitivity of progressive multi-
ple sequence alignment through sequence weighting, position-
specific gap penalties and weight matrix choice. Nucleic
Acids Research, 22, 4673–4680. DOI: 10.1093/nar/22.22.
4673.
Wang, Y. S., Xu, J. M., Zheng, R. C., Zheng, Y. G., & Shen,
Y. C. (2008). Improvement of amidase production by a
newly isolated Delftia tsuruhatensis ZJB-05174 through op-
timization of culture medium. Journal of Microbiology and
Biotechnology, 18, 1932–1937. DOI: 10.4014/jmb.0800.224.
Wang, Y. S., Zheng, R. C., Xu, J. M., Liu, Z. Q., Cheng, F.,
Feng, Z. H., Liu, L. L., Zheng, Y. G., & Shen, Y. C. (2010).
Azuma, S., Tsunekawa, H., Okabe, M., Okamoto, R., & Aiba,
S. (1993). Hyper-production of L-trytophan via fermentation
with crystallization. Applied Microbiology and Biotechnol-
ogy, 39, 471–476. DOI: 10.1007/bf00205035.
Eggers, D. K., Lim, D. J., & Blanch, H. W. (1988). Enzymatic
production of L-tryptophan in liquid membrane systems.
Bioprocess Engineering, 3, 23–30. DOI: 10.1007/bf00372856.
Fournand, D., Bigey, F., & Arnaud, A. (1998). Acyl transfer
activity of an amidase from Rhodococcus sp. strain R312:
Formation of a wide range of hydroxamic acids. Applied and
Environmental Microbiology, 64, 2844–2852.
Ikeda, M. (2006). Towards bacterial strains overproducing L-
tryptophan and other aromatics by metabolic engineering.