Page 5 of 7
ACS Catalysis
(6) For selected examples, see: (a) Prakash, G. K. S.; Chacko, S.;
(b) Chu, L.; Qing, F.-L. Oxidative Trifluoromethylation and
Trifluoromethylthiolation Reactions Using
Alconcel, S.; Stewart, T.; Mathew, T.; Olah, G. A. Stereoselective
Monofluoromethylation of Primary and Secondary Alcohols by
Using a Fluorocarbon Nucleophile in a Mitsunobu Reaction.
Angew. Chem., Int. Ed. 2007, 46, 4933-4936. (b) Mizuta, S.;
Shibata, N.; Goto, Y.; Furukawa, T.; Nakamura, S.; Toru, T.
1
2
3
4
5
6
7
8
(Trifluoromethyl)trimethylsilane as a Nucleophilic CF3-Source.
Acc. Chem. Res. 2014, 47, 1513−1522. (c) Wolstenhulme, J. R.;
Gouverneur, V. Asymmetric Fluorocyclizations of Alkenes. Acc.
Chem. Res. 2014, 47, 3560−3570. (d) Egami, H.; Sodeoka, M.
Trifluoromethylation of Alkenes with Concomitant Introduction
of Additional Functional Groups. Angew. Chem., Int. Ed. 2014, 53,
8294−8308. (e) Merino, E.; Nevado, C. Addition of CF3 Across
Unsaturated Moieties: A Powerful Functionalization Tool. Chem.
Soc. Rev. 2014, 43, 6598−6608. (f) Xu, X.-H.; Qing, F.-L. Recent
Developments in the Fluorofunctionalization of Alkenes. Curr.
Org. Chem. 2015, 19, 1566−1578. (g) Koike, T.; Akita, M. Fine
Design of Photoredox Systems for Catalytic Fluoromethylation of
Carbon−Carbon Multiple Bonds. Acc. Chem. Res. 2016, 49,
1937−1945. (h) Chatterjee, T.; Iqbal, N.; You, Y.; Cho, E. J.
Controlled Fluoroalkylation Reactions by Visible-Light
Photoredox Catalysis. Acc. Chem. Res. 2016, 49, 2284−2294. (i)
Yin, G.; Mu, X.; Liu, G. Palladium(II)-Catalyzed Oxidative
Difunctionalization of Alkenes: Bond Forming at a High-Valent
Palladium Center. Acc. Chem. Res. 2016, 49, 2413−2423. (j) Wang,
X.; Studer, A. Iodine(III) Reagents in Radical Chemistry. Acc.
Chem. Res. 2017, 50, 1712−1724. (k) Koike, T.; Akita, M. New
Cinchona
Alkaloid-Catalyzed
Enantioselective
Monofluoromethylation
Reaction
Based on
Fluorobis(phenylsulfonyl)methane Chemistry Combined with a
Mannich-type Reaction. J. Am. Chem. Soc. 2007, 129, 6394-6395.
(c) Liu, W.-B.; Zheng, S.-C.; He, H.; Zhao, X.-M.; Dai, L.-X.; You,
S.-L. Iridium-Catalyzed Regio- and Enantioselective Allylic
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Alkylation
of
Fluorobis(phenylsulfonyl)methane.
Chem.
Commun. 2009, 6604-6606. (d) Shen, X.; Miao, W.; Ni, C.; Hu, J.
Stereoselective Nucleophilic Fluoromethylation of Aryl Ketones:
Dynamic Kinetic Resolution of Chiral α-Fluoro Carbanions.
Angew. Chem., Int. Ed. 2014, 53, 775-779. (e) Sun, X.; Yu, S.
Visible-Light-Mediated Fluoroalkylation of Isocyanides with
Ethyl Bromofluoroacetates: Unified Synthesis of Mono- and
Difluoromethylated Phenanthridine Derivatives. Org. Lett. 2014,
16, 2938-2941. (f) Su, Y.-M.; Feng, G.-S.; Wang, Z.-Y.; Lan, Q.;
Wang, X.-S. Nickel-Catalyzed Monofluoromethylation of Aryl
Boronic Acids. Angew. Chem., Int. Ed. 2015, 54, 6003-6007.
(7) (a) Zhang, W.; Zhu, L.; Hu, J. Electrophilic
Monofluoromethylation of O-, S-, and N-Nucleophiles with
Chlorofluoromethane. Tetrahedron 2007, 63, 10569-10575. (b)
Prakash, G. K. S.; Ledneczki, I.; Chacko, S.; Olah, G. A. Direct
Electrophilic Monofluoromethylation. Org. Lett. 2008, 10, 557-
560. (c) Nomura, Y.; Tokunaga, E.; Shibata, N. Inherent Oxygen
Preference in Enolate Monofluoromethylation and a Synthetic
Entry to Monofluoromethyl Ethers. Angew. Chem., Int. Ed. 2011,
50, 1885-1889. (d) Liu, Y.; Lu, L.; Shen, Q. Monofluoromethyl-
Horizons
of
Photocatalytic
Fluoromethylative
Difunctionalization of Alkenes. Chem. 2018, 4, 409−437.
(12) (a) Tang, X.-J.; Thomoson, C. S.; Dolbier, W. R., Jr.
Photoredox-Catalyzed Tandem Radical Cyclization of N-
Arylacrylamides: General Methods to Construct Fluorinated 3,3-
Disubstituted 2-Oxindoles Using Fluoroalkylsulfonyl Chlorides.
Org. Lett. 2014, 16, 4594-4597. (b) Tang, X.-J.; Dolbier, W. R., Jr.
Efficient Cu-catalyzed Atom Transfer Radical Addition Reactions
of Fluoroalkylsulfonyl Chlorides with Electron-deficient Alkenes
Induced by Visible Light. Angew. Chem., Int. Ed. 2015, 54, 4246-
4249. (c) He, Z.; Tan, P.; Ni, C.; Hu, J. Fluoroalkylative Aryl
Migration of Conjugated N-Arylsulfonylated Amides Using Easily
Accessible Sodium Di- and Monofluoroalkanesulfinates. Org.
Lett. 2015, 17, 1838-1841.
(13) For selected reviews, see: (a) Neeve, E. C.; Geier, S. J.;
Mkhalid, I. A. I.; Westcott, S. A.; Marder, T. B. Diboron(4)
Compounds: From Structural Curiosity to Synthetic Workhorse.
Chem. Rev. 2016, 116, 9091-9161. (b) Collins, B. S. L.; Wilson, C. M.;
Myers, E. L.; Aggarwal, V. K. Asymmetric Synthesis of Secondary
and Tertiary Boronic Esters. Angew. Chem., Int. Ed. 2017, 56,
11700. (c) Cuenca, A. B.; Shishido, R.; Ito, H.; Fernández, E.
Transition-Metal-Free B–B and B–Interelement Reactions with
Organic Molecules. Chem. Soc. Rev. 2017, 46, 415-430. (d) Fyfe, J.
W. B.; Watson, A. J. B. Recent Developments in Organoboron
Chemistry: Old Dogs, New Tricks. Chem. 2017, 3, 31-55. (e)
Hemming, D.; Fritzemeier, R.; Westcott, S. A.; Santos, W. L.;
Steel, P. G. Copper-Boryl Mediated Organic Synthesis. Chem. Soc.
Rev. 2018, 47, 7477-7494.
(14) (a) Semba, K.; Nakao, Y. Arylboration of Alkenes by
Cooperative Palladium/Copper Catalysis. J. Am. Chem. Soc. 2014,
136, 7567-7570. (b) Smith, K. B.; Logan, K. M.; You, W.; Brown, M.
K. Alkene Carboboration Enabled by Synergistic Catalysis. Chem.
- Eur. J. 2014, 20, 12032-12036. (c) Logan, K. M.; Smith, K. B.;
Brown, M. K. Copper/Palladium Synergistic Catalysis for the syn-
and anti-Selective Carboboration of Alkenes. Angew. Chem., Int.
Ed. 2015, 54, 5228-5231. (d) Semba, K.; Ohtagaki, Y.; Nakao, Y.
Arylboration of 1-Arylalkenes by Cooperative Nickel/Copper
Catalysis. Org. Lett. 2016, 18, 3956-3959. (e) Logan, K. M.; Brown,
M. K. Catalytic Enantioselective Arylboration of Alkenylarenes.
Angew. Chem., Int. Ed. 2017, 56, 851-855. (f) Chen, B.; Cao, P.; Yin,
X.; Liao, Y.; Jiang, L.; Ye, J.; Wang, M.; Liao, J. Modular Synthesis
of Enantioenriched 1,1,2-Triarylethanes by an Enantioselective
Arylboration and Cross-Coupling Sequence. ACS Catal. 2017, 7,
2425-2429. (g) Smith, K. B.; Brown, M. K. Regioselective
Substituted
Sulfonium
Ylides:
Electrophilic
Monofluoromethylating Reagents with Broad Substrate Scopes.
Angew. Chem., Int. Ed. 2017, 56, 9930-9934.
(8) Parisi, G.; Colella, M.; Monticelli, S.; Romanazzi, G.; Holzer,
W.; Langer, T.; Degennaro, L.; Pace, V.; Luisi, R. Exploiting a
“Beast” in Carbenoid Chemistry: Development of
a
Straightforward Direct Nucleophilic Fluoromethylation Strategy.
J. Am. Chem. Soc. 2017, 139, 13648-13651.
(9) (a) Fujiwara, Y.; Dixon, J. A.; O’Hara, F.; Funder, E. D.;
Dixon, D. D.; Rodriguez, R. A.; Baxter, R. D.; Herlé, B.; Sach, N.;
Collins, M. R.; Ishihara, Y.; Baran, P. S. Practical and Innate
Carbon–Hydrogen Functionalization of Heterocycles. Nature
2012, 492, 95-99. (b) Shen, X.; Zhou, M.; Ni, C.; Zhang, W.; Hu, J.
Direct Monofluoromethylation of O-, S-, N-, and P-Nucleophiles
with PhSO(NTs)CH2F: The Accelerating Effect of α-Fluorine
Substitution. Chem. Sci. 2014, 5, 117-122.
(10) (a) An, L.; Xiao, Y.-L.; Min, Q.-Q.; Zhang, X. Facile Access
to Fluoromethylated Arenes by Nickel-Catalyzed Cross-Coupling
between Arylboronic Acids and Fluoromethyl Bromide. Angew.
Chem., Int. Ed. 2015, 54, 9079-9083. (b) Hu, J.; Gao, B.; Li, L.; Ni,
C.; Hu, J. Palladium-Catalyzed Monofluoromethylation of
Arylboronic Esters with Fluoromethyl Iodide. Org. Lett. 2015, 17,
3086-3089. (c) Sheng, J.; Ni, H.-Q.; Zhang, H.-R.; Zhang, K.-F.;
Wang, Y.-N.; Wang, X.-S. Nickel-Catalyzed Reductive Cross-
Coupling of Aryl Halides with Monofluoroalkyl Halides for Late-
Stage Monofluoroalkylation. Angew. Chem., Int. Ed. 2018, 57,
7634-7639. (d) Merchant, R. R.; Edwards, J. T.; Qin, T.; Kruszyk,
M. M.; Bi, C.; Che, G.; Bao, D.-H.; Qiao, W.; Sun, L.; Collins, M.
R.; Fadeyi, O. O.; Gallego, G. M.; Mousseau, J. J.; Nuhant, P.;
Baran, P. S. Modular Radical Cross-Coupling with Sulfones
Enables Access to sp3-Rich (Fluoro)alkylated Scaffolds. Science
2018, 360, 75-80.
(11) For selected reviews, see: (a) Liang, T.; Neumann, C. N.;
Ritter, T. Introduction of Fluorine and Fluorine-Contaning
Functional Groups. Angew. Chem., Int. Ed. 2013, 52, 8214−8264.
ACS Paragon Plus Environment