M. C. Myers et al. / Bioorg. Med. Chem. Lett. 17 (2007) 4761–4766
4765
4. Frlan, R.; Gobec, S. Curr. Med. Chem. 2006, 13, 2309.
inhibitor. Presumably, the active site cysteine acts much
like DTT to transesterify 1, and thereby forms a tran-
sient thiophenoyl-enzyme intermediate.7,32,33 To test this
scenario, a stoichiometric reaction was devised to incu-
bate pyrazole ester 1 (1 equiv) with and without cathep-
sin B (2 equiv) (Table 5).
5. Greenspan, P. D.; Clark, K. L.; Tommasi, R. A.; Cowen,
S. D.; McQuire, L. W.; Farley, D. L.; van Duzer, J. H.;
Goldberg, R. L.; Zhou, H.; Du, Z.; Fitt, J. J.; Coppa, D.
E.; Fang, Z.; Macchia, W.; Zhu, L.; Capparelli, M. P.;
Goldstein, R.; Wigg, A. M.; Doughty, J. R.; Bohacek, R.
S.; Knap, A. K. J. Med. Chem. 2001, 44, 4524.
6. Schirmeister, T.; Kaeppler, U. Mini-Rev. Med. Chem.
2003, 3, 361.
Table 5. Standard assay conditions with and without cathepsin B: a
stoichiometric reaction analyzed by LC–MSa
7. Otto, H.-H.; Schirmeister, T. Chem. Rev. 1997, 97, 133.
8. Hernandez, A. A.; Roush, W. R. Curr. Opin. Chem. Biol.
2002, 6, 459.
S
O
11. PubChem web address for PCMD cathepsin B hits: http://
O
standard assay conditions
O
NH
H2N
with and without cathepsin B
N
S
N
+
1
H2N
O
O
N
S
O
O
15 min then LC-MS analysis
1
12
´
12. Tjernberg, A.; Hallen, D.; Schultz, J.; James, S.; Benke-
Assay conditions
with cathepsin B
Assay conditions
without cathepsin B
stock, K.; Bystro¨m, S.; Weigelt, J. Bioorg. Med. Chem.
Lett. 2004, 14, 891.
0% remaining 1
50% remaining 1
13. Compounds were serially diluted in DMSO and trans-
ferred into the assay microplate using a 100-nL pintool to
give 16 dilutions ranging from 50 lM to 1.5 nM. Triplicate
plates were set up in this manner to give three indepen-
dently calculated IC50 values for each compound. Cathep-
sin B (Calbiochem 219362) was activated by incubating
with assay buffer for 15 min. Assay buffer consisted of
100 mM sodium-potassium phosphate, pH 6.8 (86 mM
potassium phosphate, monobasic; 7 mm sodium phos-
phate, monobasic; 7 mM sodium phosphate, tribasic),
1 mM EDTA, and 2 mM DTT. Upon activation, cathep-
sin B was incubated with Z-Arg-Arg-AMC substrate
(15 lM) and test compound in 10 lL of assay buffer for
1 h at room temperature. Fluorescence of AMC released
by enzyme-catalyzed hydrolysis of Z-Arg-Arg-AMC was
read on a Perkin-Elmer Envision microplate reader
(excitation 355 nm, emission 460 nm).
a LC–MS analysis conducted on a 6.5 minute run time (20 lM
cathepsin B; 10 lM 1).
Under these stoichiometric reaction conditions, in the
presence of cathepsin B, pyrazole 1 was fully converted
to 12 after only 15 min. However, under identical condi-
tions, in the absence of cathepsin B, 50% of pyrazole 1
remained.34 We conclude that pyrazole esters such as 1
are competitive substrates for the enzyme cathepsin B.
In summary, we have demonstrated that pyrazole 1 acts
as an alternate substrate for the cysteine protease,
cathepsin B. Synthesis and evaluation of related analogs
revealed the potential reactivity of the ester functionality
with the nucleophilic enzyme active site cysteine to form
a transient thiphenoyl-enzyme intermediate. Initially,
the similar reactivity of DTT and cysteine in the bioas-
say confounded the HTS and subsequent assay results
due to the nucleophilic properties of the thiol sulfur.
Thus, it is important for the biological and chemical
communities to consider the potential of DTT and cys-
teine to act as nucleophiles in assay systems where sub-
strates contain electrophilic functionality.
14. Characterization data for 1. Mp = 167 ꢁC; IR (thin film,
CH2Cl2) 3479, 3328, 1733, 1621, 1189, 610 cmÀ1 1H
;
NMR (500 MHz, DMSO-d6) d 8.11 (m, 1H), 7.98 (m, 1H),
7.94 (m, 2H), 7.79 (m, 1H), 7.69 (m, 2H), 7.29 (m, 1H),
6.57, (s, 3H), 5.36 (s, 1H); 13C NMR (125 MHz, DMSO-
d6) d 158.4, 158.0, 152.4, 136.5, 136.2, 135.9, 134.9, 130.4,
129.8, 128.9, 127.2, 80.5; high resolution mass spectrum
(ES+) m/z 350.0265 [(M+H)+; calcd for C14H11N3O4S2H+:
350.0269].
15. A single crystal X-ray structure of pyrazole ester 2 was
also obtained to verify its structure.
16. Elgemeie, G. H.; Metwally, N. H. J. Chem. Res. 1999, 6,
384.
Acknowledgments
17. Elgemeie, G. H.; Elghandour, A. H.; Elzanate, A. M.;
Masoud, W. A. Phosphorus, Sulfur Silicon 2000, 163, 91.
18. For the cyclization of hydrazide-substituted ureas using
this protocol, see: Drummond, J. T.; Johnson, G.
J. Heterocycl. Chem. 1988, 25, 1123.
Financial support for this work was provided by the
NIH (5U54HG003915-02). We thank Professor Barry
S. Cooperman for helpful discussions. We also thank
Dr. Patrick J. Carroll for X-ray structural determination
of pyrazole ester 2.
19. Vostrova, L. M.; Grenad’orova, M. V.; Klad’ko, L. G.
Ukr. Khim. Zh. 2004, 9–10, 115.
20. PC Spartan is available from Wavefunction, Inc., 18401
Von Karman Avenue, Suite 370 Irvine, CA 92612.
21. Kim, M. J.; Yamamoto, D.; Matsumoto, K.; Inoue, M.;
Ishida, T.; Mizuno, H.; Sumiya, S.; Kitamura, K. Bioche.
J. 1992, 287, 797.
References and notes
1. McGrath, M. E. Annu. Rev. Biophys. Biomol. Struct. 1999,
28, 181.
´
22. de Dios, A.; Prieto, L.; Martın, J. A.; Rubio, A.;
Ezquerra, J.; Tebbe, M.; de Uralde, B. L.; Martın, J.;
2. Hook, V.; Toneff, T.; Bogyo, M.; Greenbaum, D.;
Medzihradszky, K. F.; Neveu, J.; Lane, W.; Hook, G.;
Reisine, T. Biol. Chem. 2005, 386, 931.
3. Michaud, S.; Gour, B. J. Exp. Opin. Ther. Patents 1998, 6,
645.
´
´
Sanchez, A.; LeTourneau, D. L.; McGee, J. E.; Boylan,
C.; Parr, T. R.; Smith, M. C. J. Med. Chem. 2002, 45,
4559.