LETTER
Total Synthesis of Diospongin A
2047
reaction7 using diisopropylazodicaboxylate (DIAD),
triphenylphosphine, and p-nitrobenzoic acid in toluene to
afford the product 7 in 90% yield. Subsequent Wacker
oxidation8 of compound 7 using PdCl2 and CuCl in DMF–
H2O afforded product 8 in 89% yield. Compound 8 was
then subjected to hydrolysis using K2CO3 in MeOH to fur-
nish the target molecule, diospongin A (1) in 90% yield
(Scheme 3). The structure of the diospongin A was con-
firmed by comparing its spectral and physical data with
the natural product isolated by Jun Yin et al.,1 and also
with previous synthetic reports.9
(6) The enantiomeric excess of the product 6 was determined by
using the Shimadzu high-performance liquid-chromatog-
raphy (HPLC) system equipped with a chiral HPLC column
(Eurocel 01, 5 mm OD) and a UV detector (225 nm). A
solvent system of n-hexane–i-PrOH (8:2) and a flow rate of
1.0 mL/min were used.
(7) Mitsunobu, O. Synthesis 1981, 1.
(8) For a review on Wacker oxidation: Tsuji, J. Synthesis 1984,
369.
(9) (a) Sawant, K. B.; Jennings, M. P. J. Org. Chem. 2006, 71,
7911. (b) Bressy, C.; Allais, F.; Cossy, J. Synlett 2006,
3455. (c) Chandrasekhar, S.; Shyamsunder, T.; Jayaprakash,
S.; Prabhakar, A.; Jagadeesh, B. Tetrahedron Lett. 2006, 47,
47.
(10) (E)-2-Phenyl-6-styryl-tetrahydro-2H-pyran-4-ol (3)
Trifluoroacetic acid (16.3 mL) was added slowly to a
solution of 2 (1.2 g, 8.0 mmol) and cinnamaldehyde (3.16 g,
24.0 mmol) in CH2Cl2 (50 mL) at r.t. under a nitrogen
atmosphere. The reaction mixture was stirred for 3.0 h and
then treated with sat. aq NaHCO3 solution (40 mL) followed
by Et3N to adjust pH > 7. The organic layer was separated
and then the aqueous layer was extracted with CH2Cl2
(3 × 40 mL). The solvent was removed in vacuo and the
resulting crude product was treated with K2CO3 (2 g) in
MeOH (30 mL) over 0.5 h. Then, MeOH was removed under
reduced pressure and diluted with H2O (15 mL) and
extracted with CH2Cl2 (3 × 20 mL). The combined organic
layers were dried (Na2SO4) and the solvent was removed
under reduced pressure. The crude product was purified by
column chromatography to afford product 3 as yellow liquid
(1.77 g, 78%). Rf = 0.4 (SiO2, 30% EtOAc in hexane). IR
(KBr): n = 3420, 3029, 2922, 1717, 1602, 1494, 1450, 1063,
755, 699 cm–1. 1H NMR (300 MHz, CDCl3): d = 7.44–7.13
(m, 10 H), 6.62 (d, J = 15.8 Hz, 1 H), 6.24 (dd, J = 15.8, 5.2
Hz, 1 H), 4.53 (d, J = 11.3 Hz, 0.5 H), 4.44 (d, J = 11.3 Hz,
0.5 H), 4.17 (dd, J = 10.5, 4.5 Hz, 1 H), 4.11–3.92 (m, 1 H)
2.33–2.10 (m, 2 H), 1.63–1.35 (m, 2 H). 13C NMR (75 MHz,
CDCl3): d = 141.8, 136.7, 130.4, 129.5, 128.4, 128.3, 128.3,
127.5, 127.4, 126.4, 126.0, 125.8, 77.7, 76.3, 68.4, 42.8,
41.1. MS (EI): m/z = 281 [M + 1].
In summary, we have described a short and efficient
enzymatic synthetic route for the synthesis of diospongin
A. The synthesis involves direct and straightforward
reactions such as the Prins cyclization, enzymatic kinetic
resolution, Mitsunobu inversion, and Wacker oxidation
that make it quite simple and more convenient for scaling
up the products.10
Acknowledgment
B.P.V. and Ch.V. thank CSIR New Delhi for the award of
fellowships.
References and Notes
(1) Yin, J.; Kouda, K.; Tezuka, Y.; Le Tran, Q.; Miyahara, T.;
Chen, Y.; Kadota, S. Planta Med. 2004, 70, 54.
(2) For the Prins cyclization, see for example: (a) Barry, C. S.
J.; Crosby, S. R.; Harding, J. R.; Hughes, R. A.; King, C. D.;
Parker, G. D.; Willis, C. L. Org. Lett. 2003, 5, 2429.
(b) Yang, X.-F.; Mague, J. T.; Li, C.-J. J. Org. Chem. 2001,
66, 739. (c) Aubele, D. L.; Wan, S.; Floreancig, P. E. Angew.
Chem. Int. Ed. 2005, 44, 3485. (d) Barry, C. S.; Bushby, N.;
Harding, J. R.; Willis, C. S. Org. Lett. 2005, 7, 2683.
(e) Cossey, K. N.; Funk, R. L. J. Am. Chem. Soc. 2004, 126,
12216. (f) Crosby, S. R.; Harding, J. R.; King, C. D.; Parker,
G. D.; Willis, C. L. Org. Lett. 2002, 4, 3407. (g)Marumoto,
S.; Jaber, J. J.; Vitale, J. P.; Rychnovsky, S. D. Org. Lett.
2002, 4, 3919. (h) Kozmin, S. A. Org. Lett. 2001, 3, 755.
(i) Jaber, J. J.; Mitsui, K.; Rychnovsky, S. D. J. Org. Chem.
2001, 66, 4679. (j) Kopecky, D. J.; Rychnovsky, S. D. J.
Am. Chem. Soc. 2001, 123, 8420. (k) Rychnovsky, S. D.;
Thomas, C. R. Org. Lett. 2000, 2, 1217. (l) Rychnovsky, S.
D.; Yang, G.; Hu, Y.; Khire, U. R. J. Org. Chem. 1997, 62,
3022. (m) Su, Q.; Panek, J. S. J. Am. Chem. Soc. 2004, 126,
2425. (n) Yadav, J. S.; Reddy, B. V. S.; Sekhar, K. C.;
Gunasekar, D. Synthesis 2001, 885. (o) Yadav, J. S.; Reddy,
B. V. S.; Reddy, M. S.; Niranjan, N. J. Mol. Catal. A: Chem.
2004, 210, 99. (p) Yadav, J. S.; Reddy, B. V. S.; Reddy, M.
S.; Niranjan, N.; Prasad, A. R. Eur. J. Org. Chem. 2003,
1779. (q) Yadav, J. S.; Rao, P. P.; Reddy, M. S.; Rao, N. V.;
Prasad, A. R. Tetrahedron Lett. 2007, 48, 1469.
(2S,4R,6R)-2-Phenyl-6-[(E)-styryl]tetrahydro-2H-
pyran-4-yl Acetate (4)
A mixture of ( )-3 (1.5 g, 5.3 mmol) and vinyl acetate (5
mL) in cyclohexane (10 mL) was stirred with the enzyme
Porcine pancreatic lipase (EC 3.1.1.3) type II (ca. 300 mg,
20% w/w) supplied by Sigma Aldrich at r.t. for 5 d. The
reaction mixture was filtered through a pad of Celite. The
combined filtrate and washings (EtOAc) were evaporated
under reduced pressure. The residue obtained was purified
by column chromatography on silica gel to furnish the
required enantiomerically pure acetate 4 (759 mg, 44%) and
alcohol 5 (690 mg, 46%).
Compound 4: liquid; [a]D25 –8.5 (c 1.15, CHCl3). IR (KBr):
n = 3445, 3029, 2926, 2852, 1737, 1632, 1450, 1366, 1240,
1164, 1061, 1033, 968, 912, 754, 697 cm–1. 1H NMR (300
MHz, CDCl3): d = 7.42–7.15 (m, 10 H), 6.63 (d, J = 16.6 Hz,
1 H), 6.23 (dd, J = 6.0, 16.6 Hz, 1 H), 5.26–5.03 (m, 1 H),
4.53 (dd, J = 1.5, 11.3 Hz, 1 H), 4.26 (dd, J = 6.0, 11.3 Hz, 1
(3) (a) Chojnacka, A.; Robert, O.; Wawrzeńczyka, C.
Tetrahedron: Asymmetry 2007, 18, 101. (b) Morgan, B.;
Oehlschlager, C. A.; Stokes, M. T. J. Org. Chem. 1992, 57,
3231.
(4) Yadav, J. S.; Reddy, B. V. S.; Mahesh Kumar, G.; Murthy
Ch., V. S. R. Tetrahedron Lett. 2001, 42, 89.
(5) (a) Alder, R. W.; Harvey, J. N.; Oakley, M. T. J. Am. Chem.
Soc. 2002, 124, 4960. (b) Ramesh, J.; Rychnovsky, S. D.
Org. Lett. 2006, 8, 2175. (c) Biermann, U.; Lutzen, A.;
Metzger, J. O. Eur. J. Org. Chem. 2006, 2631.
H), 2.35–2.14 (m, 2 H), 2.04 (s, 3 H), 1.73–1.50 (m, 2 H). 13
C
NMR (75 MHz, CDCl3): d = 170.7, 142.0, 141.8, 137.0,
130.9, 129.5, 128.8, 128.6, 127.9, 126.8, 126.2, 126.1, 78.0,
77.8, 70.9, 70.7, 39.6, 39.3, 37.6, 21.5. MS (EI): m/z = 345
[M + 23].
Compound 5: liquid; [a]D25 +4.5 (c 0.35, CHCl3).
(2S,4R,6R,E)-2-Phenyl-6-styryltetrahydro-2H-pyran-4-
ol (6)
Compound 4 (500 mg, 1.5 mmol) was dissolved in MeOH
(10 mL) and stirred with K2CO3 (214 mg, 1.5 mmol) for 15
Synlett 2007, No. 13, 2045–2048 © Thieme Stuttgart · New York