V.V. Brahmbhatt et al. / Chemistry and Physics of Lipids 145 (2007) 72–84
83
Veldhoven and Mannaerts, 1993). It is also possible
forms Schiff base adducts and Michael adducts with
primary amino and thiol groups similar to 4-hydroxy-
2002; Okada et al., 1999).
ucts have similar proliferative actions as S1P (Kariya et
al., 2005). Moreover, a role for a ceramide metabolite in
cell toxicity has also been suggested (Tserng and Griffin,
2004). Thus, it is likely that 2-hexadecenal and 1-cyano
methano phosphocholine possess biological activity and
it would be of interest to learn these in an effort to under-
stand the pathogenesis of atherosclerosis.
Bligh, E.G., Dyer, W.J., 1959. A rapid method of total lipid extraction
and purification. Can. J. Biochem. Physiol. 37, 911–917.
Carr, A.C., van den Berg, J.J., Winterbourn, C.C., 1998. Differential
reactivities of hypochlorous and hypobromous acids with puri-
fied Escherichia coli phospholipid: formation of haloamines and
halohydrins. Biochim. Biophys. Acta 1392, 254–264.
Cech, P., Papathanassiou, A., Boreux, G., Roth, P., Miescher, P.A.,
1979. Hereditary myeloperoxidase deficiency. Blood 53, 403–411.
Crabb, J.W., O’Neil, J., Miyagi, M., West, K., Hoff, H.F., 2002.
Hydroxynonenal inactivates cathepsin B by forming Michael
adducts with active site residues. Protein Sci. 11, 831–840.
Deguchi, H., Yegneswaran, S., Griffin, J.H., 2004. Sphingolipids as
bioactive regulators of thrombin generation. J. Biol. Chem. 279,
12036–12042.
Edwards, S.W., Nurcombe, H.L., Hart, C.A., 1987. Oxidative inac-
tivation of myeloperoxidase released from human neutrophils.
Biochem. J. 245, 925–928.
Hampton, M.B., Kettle, A.J., Winterbourn, C.C., 1998. Inside the
neutrophil phagosome: oxidants, myeloperoxidase, and bacterial
killing. Blood 92, 3007–3017.
Acknowledgements
Harrison, J.E., Schultz, J., 1976. Studies on the chlorinating activity of
myeloperoxidase. J. Biol. Chem. 251, 1371–1374.
This research was supported by NIH grants HL 74214
(DAF) RR00954 (Washington University Mass Spec-
trometry Resource) and RR19232 (DAF) as well as
Grant-in-Aid 0650044Z (DAF) from the American Heart
Association.
Hazen, S.L., Hsu, F.F., Duffin, K., Heinecke, J.W., 1996. Molecular
chlorine generated by the myeloperoxidase-hydrogen peroxide-
chloride system of phagocytes converts low density lipoprotein
cholesterol into a family of chlorinated sterols. J. Biol. Chem. 271,
23080–23088.
Hollenberg, P.F., Rand-Meir, T., Hager, L.P., 1974. The reaction of
chlorite with horseradish peroxidase and chloroperoxidase. Enzy-
matic chlorination and spectral intermediates. J. Biol. Chem. 249,
5816–5825.
Hsu, F.F., Hazen, S.L., Giblin, D., Turk, J., Heinecke, J.W., Gross, M.L.,
1999. Mass spectrometric analysis of pentafluorobenzyl oxime
derivative of reactive biological aldehydes. Int. J. Mass Spectr.
187, 795–812.
Jiang, Q., Griffin, D.A., Barofsky, D.F., Hurst, J.K., 1997. Intraphago-
somal chlorination dynamics and yields determined using unique
fluorescent bacterial mimics. Chem. Res. Toxicol. 10, 1080–1089.
Kariya, Y., Kihara, A., Ikeda, M., Kikuchi, F., Nakamura, S.,
Hashimoto, S., Choi, C.H., Lee, Y.M., Igarashi, Y., 2005. Prod-
ucts by the sphingosine kinase/sphingosine 1-phosphate (S1P)
lyase pathway but not S1P stimulate mitogenesis. Genes Cells 10,
605–615.
Kimura, T., Sato, K., Kuwabara, A., Tomura, H., Ishiwara, M.,
Kobayashi, I., Ui, M., Okajima, F., 2001. Sphingosine 1-phosphate
may be a major component of plasma lipoproteins responsible
for the cytoprotective actions in human umbilical vein endothelial
cells. J. Biol. Chem. 276, 31780–31785.
Kitahara, M., Eyre, H.J., Simonian, Y., Atkin, C.L., Hasstedt, S.J.,
1981. Hereditary myeloperoxidase deficiency. Blood 57, 888–893.
Lampert, M.B., Weiss, S.J., 1983. The chlorinating potential of the
human monocyte. Blood 62, 645–651.
Lehrer, R.I., Cline, M.J., 1969. Leukocyte myeloperoxidase deficiency
and disseminated candidiasis: the role of myeloperoxidase in resis-
tance to Candida infection. J. Clin. Invest. 48, 1478–1488.
Mancuso, A.J., Huang, S.-L., Swern, D., 1978. Oxidation of long-chain
and related alcohols to carbonyls by dimethyl sulfoxide “activated”
by oxalyl chloride. J. Org. Chem. 43, 2480–2482.
References
Albert, C.J., Crowley, J.R., Hsu, F.F., Thukkani, A.K., Ford, D.A.,
2001. Reactive chlorinating species produced by myeloperoxidase
target the vinyl ether bond of plasmalogens: identification of 2-
chlorohexadecanal. J. Biol. Chem. 276, 23733–23741.
Albrich, J.M., McCarthy, C.A., Hurst, J.K., 1981. Biological reactivity
of hypochlorous acid: implications for microbicidal mechanisms
of leukocyte myeloperoxidase. Proc. Natl. Acad. Sci. USA 78,
210–214.
Alewijnse, A.E., Peters, S.L., Michel, M.C., 2004. Cardiovascu-
lar effects of sphingosine-1-phosphate and other sphingomyelin
metabolites. Br. J. Pharmacol. 143, 666–684.
Altmann, C., Meyer Zu Heringdorf, D., Boyukbas, D., Haude, M.,
Jakobs, K.H., Michel, M.C., 2003. Sphingosylphosphorylcholine,
a naturally occurring lipid mediator, inhibits human platelet func-
tion. Br. J. Pharmacol. 138, 435–444.
Asselbergs, F.W., Reynolds, W.F., Cohen-Tervaert, J.W., Jessurun,
G.A., Tio, R.A., 2004. Myeloperoxidase polymorphism related to
cardiovascular events in coronary artery disease. Am. J. Med. 116,
429–430.
Ayanoglu, E., Wegmann, A., Pilet, O., Dean Marbury, G., Ronald
Hass, J., Djerassi, C., 1984. Mass spectrometry of phospholipids.
Some applications of desorption chemical ionization and fast atom
bombardment. J. Am. Chem. Soc. 106, 5246–5251.
Baumann, W.J., Schmid, H.H., Mangold, H.K., 1969. Oxidative cleav-
age of lipids with sodium metaperiodate in pyridine. J. Lipid Res.
10, 132–133.
Bergt, C., Pennathur, S., Fu, X., Byun, J., O’Brien, K., McDonald,
T.O., Singh, P., Anantharamaiah, G.M., Chait, A., Brunzell, J.,
Geary, R.L., Oram, J.F., Heinecke, J.W., 2004. The myeloperoxi-
dase product hypochlorous acid oxidizes HDL in the human artery
wall and impairs ABCA1-dependent cholesterol transport. Proc.
Natl. Acad. Sci. USA 101, 13032–13037.
Marsche, G., Heller, R., Fauler, G., Kovacevic, A., Nuszkowski, A.,
Graier, W., Sattler, W., Malle, E., 2004. 2-Chlorohexadecanal
derived from hypochlorite-modified high-density lipoprotein-
associated plasmalogen is a natural inhibitor of endothelial