ways.13 Several of these methods constitute efficient path-
ways and high levels of selectivity for the formation of 2,6-
cis-dihydropyrans. However, access to the complimentary
2,6-trans-dihydropyrans remains underdeveloped.14
Scheme 2. New Chiral Crotyl Silanes in [4+2]-Annulation15
We have described the use of chiral silanes 2a-d in
[4+2]-annulations leading to the preparation of functional-
ized dihydropyrans.15 These reagents access pyrans of the
general structure 3a-e illustrated in Scheme 1.
Scheme 1. Chiral Crotyl and Allyl Silanes in
[4+2]-Annulations
diethyl zinc, and a catalytic amount of copper(I) cyanide to
give 7a in 90% yield as a single stereoisomer.19
Scheme 3. Synthesis of (E) and (Z)-Vinyl Silanes
The complementary Z-vinyl silane 7b was synthesized in
3 steps from 6. A regioselective hydroalumination with Red-
Al followed by an iodine trap provided an enantiomerically
pure vinyl iodide.20 The alcohol was then protected as the
dimethylphenylsilyl ether and subjected to a retro-Brook
rearrangement21 to give 7b in 3 steps (65% yield).22 Both
the Z- and E-vinyl silanes can be prepared on a 20 g scale
with greater than 99% enantiomeric excess as determined
by chiral HPLC.23
With both vinyl silanes in hand the remaining steps in the
formation of the desired crotyl silanes parallel each other
with few variations in yield and procedure for [3,3]-
sigmatropic rearrangement (Scheme 4). Substrates for the
Claisen rearrangements were prepared through a DCC
coupling of (4-methoxybenzyloxy)acetic acid24 with vinyl
silanes depicted in Scheme 2 to give 8a and 8b. Treatment
with LiHMDS and trapping of the intermediate lithium
enolate at -78 °C with TMSCl and warming to room
temperature afforded the desired R-alkoxy acids 9a and
9b.25,26 The rearrangement of 8a gave only one detectable
diastereoisomer of the hexanoic acid by NMR. The comple-
Herein, we describe the synthesis of dihydropyrans with
high diastereo- and enantioselectivity from silanes 4a and
4b bearing a quaternary center at the carbon bearing the silyl
group.16 The described methodology will then be utilized in
the synthesis of the C1a-C10 fragment of kendomycin 1.
The synthesis of silanes 4a and 4b began with the
preparation of vinyl silanes 7a and 7b (Scheme 3). The
synthesis of E-vinyl silane used a silyl-zincation of (R)-3-
pentyn-2-ol 617 employing lithium dimethylphenyl silane,18
(13) (a) Paterson, I.; Luckhurst, C. Tetrahedron. Lett. 2003, 44, 3749.
(b) Dossetter, A. G.; Jamison, T. F.; Jacobsen, E. N. Angew. Chem., Int.
Ed. 1999, 38, 2398.
(14) (a) Ramnauth, J.; Poulin, O.; Rakhit, S.; Maddaford, S. Org. Lett.
2001, 3, 2013. (b) Palmacci, E.; Seeberger, P. Org. Lett. 2001, 3, 1547.
(15) (a) Huang, H.; Panek, J. S. J. Am. Chem. Soc. 2000, 122, 9836. (b)
Huang, H.; Panek, J. S. Org. Lett. 2004, 5, 1991. (c) Su, Q.; Panek, J. S.
J. Am. Chem. Soc. 2004, 126, 2425. (d) Su, Q.; Panek, J. S. Angew. Chem.,
Int. Ed. 2005, 44, 1223.
(16) Prior methods required several additional steps to install a methyl
group in the 3-position with use of 2a or 2b. A more efficient approach
would be to introduce the second methyl group prior to annulation as
depicted in Scheme 2, transforming 4 into 5. Representative examples of
3,5-substituted glycosides: (a) Wang, L.; Floreancig, P. E. Org. Lett. 2004,
6, 569. (b) Wender, P. A.; Jankowski, O. D.; Tabet, E. A.; Seto, H. Org.
Lett. 2003, 5, 2299. (c) Czuba, I. R.; Zammit, S.; Rizzacasa, M. A. Org.
Biomol. Chem. 2003, 1, 2044 and references therein.
(19) (a) Wakamatsu, K.; Nonaka, T.; Okuda, Y.; Tuckmantel, W.;
Oshima, K.; Utimoto, K.; Nozaki, H. Tetrahedron 1986, 42, 4427. (b)
Okuda, Y.; Wakamatsu, K.; Tuckmantel, W.; Oshima, K.; Nozaki, H.
Tetrahedron Lett. 1985, 26, 4629.
(20) Marshall, J. A.; Shearer, B.; Crooks, S. J. Org. Chem. 1987, 52,
1236.
(21) For recent examples of retro-Brook rearrangement see: Gandon,
V.; Bertus, P.; Szymoniak, J. Tetrahedron Lett. 2000, 41, 3053 and
references therein.
(22) (a) Arnold, L. A.; Naasz, R.; Minnaard, A. J.; Feringa, B. L. J. Am.
Chem. Soc. 2001, 123, 5841. (b) Kim, L.; Margiotis, P. Tetrahedron Lett.
1990, 31, 6137.
(23) See the Supporting Information.
(17) (a) Shimizu, A.; Ogawa, O.; Shiozaki, S.; Kodama, K. Japanese
Patent 11235195, 1999. (b) Ogawa, J.; Xie, S.-X.; Shimizu, S. Appl.
Microbiol. Biotechnol. 1999, 51, 53.
(24) Abraham, D. J.; Kennedy, P. E.; Mehanna, A. S.; Patwa, D. C.;
Williams, F. L. J. Med. Chem. 1984, 27, 967.
(25) Sparks, M. A.; Panek, J. S. J. Org. Chem. 1991, 56, 3431.
(26) Clark, T.; Panek, J. S. J. Org. Chem. 1992, 57, 4323.
(18) Trost, B.; Tour, J. J. Org. Chem. 1989, 54, 484.
1530
Org. Lett., Vol. 7, No. 8, 2005