2282 J ournal of Medicinal Chemistry, 2003, Vol. 46, No. 12
Letters
(9) Sugimoto, H.; Yamanishi, Y.; Iimura, Y.; Kawakami, Y. Done-
pezil hydrochloride (E2020) and other acetylcholinesterase
inhibitors. Curr. Med. Chem. 2000, 7, 303-339.
two cholinesterases is the lack of the PAS (in particular
of Trp286) in BuChE.27 This seems to prevent the
interaction of BuChE with Aâ, such that no role on Aâ
aggregation can be played by this enzyme.5 For instance,
tacrine, a nonselective mixed-type AChE inhibitor, binds
more tightly to BuChE and is almost inactive in inhibit-
ing the AChE-promoted Aâ aggregation.7 This inhibitor
mostly interacts with AChE catalytic site,28 as it likely
does with BuChE. In contrast, propidium, a well-known
AChE inhibitor binding exclusively at the PAS, is almost
inactive against BuChE and strongly inhibits the AChE-
induced Aâ aggregation.7 The results presented in Table
1 confirm the phenomenological correlation between
AChE selectivity and inhibition of the AChE-induced
proaggregating action. It might be concluded that
inhibitors of AChE able to strongly interact with the
PAS show high AChE/BuChE selectivity and eventually
an inhibitory action against AChE-induced Aâ aggrega-
tion. We might therefore advance that AChE/BuChE
selectivity is key information when searching new
potential inhibitors of AChE-induced Aâ aggregation.
In conclusion, here we present evidence of the in vitro
Aâ antiaggregating action of an AChE inhibitor that
was designed in such a way as to be able to contact
simultaneously both the catalytic and the peripheral
binding sites of the enzyme. This action combines with
an elevated AChE inhibitory potency to provide a
compound endowed with a potentially useful biological
profile for the treatment of AD. By the way, we also
showed how the integration of focused computational,
synthetic and biochemical efforts led to the identification
and in vitro characterization of a new lead compound
bearing the desired biological properties.
(10) Kryger, G.; Silman, I.; Sussman, J . L. Three-dimensional
structure of a complex of E2020 with acetylcholinesterase from
Torpedo californica. J . Physiol. Paris 1998, 92, 191-194.
(11) Bartolucci, C.; Perola, E.; Pilger, C.; Fels, G.; Lamba, D. Three-
dimensional structure of a complex of galanthamine (Nivalin)
with acetylcholinesterase from Torpedo californica: implications
for the design of new anti-Alzheimer drugs. Proteins 2001, 42,
182-191.
(12) Rampa, A.; Bisi, A.; Valenti, P.; Recanatini, M.; Cavalli, A.;
Andrisano, V.; Cavrini, V.; Fin, L.; Buriani, A.; Giusti, P.
Acetylcholinesterase inhibitors: synthesis and structure-activ-
ity relationships of omega-[N-methyl-N-(3-alkylcarbamoyloxy-
phenyl)methyl]aminoalkoxyheteroaryl derivatives. J . Med. Chem.
1998, 41, 3976-3986.
(13) Bruhlmann, C.; Ooms, F.; Carrupt, P. A.; Testa, B.; Catto, M.;
Leonetti, F.; Altomare, C.; Carotti, A. Coumarins derivatives as
dual inhibitors of acetylcholinesterase and monoamine oxidase.
J . Med. Chem. 2001, 44, 3195-3198.
(14) Kuntz, I. D.; Blaney, J . M.; Oatley, S. J .; Langridge, R.; Ferrin,
T. E. A geometric approach to macromolecule-ligand interactions.
J . Mol. Biol. 1982, 161, 269-288.
(15) Stewart, J . P. P. Optimization of parameters for semiempirical
methods I. Methodol. J . Comput. Chem. 1989, 10, 209-220.
(16) Bayly, C. I.; Cieplak, P.; Cornell, W. D.; Kollman, P. A. A well-
behaved electrostatic potential based method using charge
restraints for determining atom-centered charges: the RESP
model. J . Phys. Chem. 1993, 97, 10269-10280.
(17) Wendy, D. C.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K.
M.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J . W.;
Kollman, P. A. A second generation force field for the simulation
of proteins, nucleic acids, and organic molecules. J . Am. Chem.
Soc. 1995, 117, 5179-5197.
(18) Dougherty, D. A. Cation-pi interactions in chemistry and biol-
ogy: a new view of benzene, Phe, Tyr, and Trp. Science 1996,
271, 163-168.
(19) Sulpizi, M.; Carloni, P. Cation-pi versus OH-pi interactions in
proteins: A density functional study. J . Phys. Chem. B 2000,
104, 10087-10091.
(20) Sullivan, B.; Djura, P.; McIntyre, D. E.; Faulkner, D. J .
Antimicrobial constituents of the Sponge Siphonodictyon Cor-
raliphagum. Tetrahedron 1981, 37, 979-982.
(21) Ellman, G. L.; Courtney, K. D.; Andres, V.; Featherstone, R. M.
A new and rapid colorimetric determination of acetylcholin-
esterase activity. Biochem. Pharmacol. 1961, 7, 88-95.
(22) Rampa, A.; Bisi, A.; Belluti, F.; Gobbi, S.; Valenti, P.; Andrisano,
V.; Cavrini, V.; Cavalli, A.; Recanatini, M. Acetylcholinesterase
inhibitors for potential use in Alzheimer’s disease: molecular
modeling, synthesis and kinetic evaluation of 11H-indeno-[1,2-
b]-quinolin-10-ylamine derivatives. Bioorg. Med. Chem. 2000,
8, 497-506.
(23) Snape, M. F.; Misra, A.; Murray, T. K.; De Souza, R. J .; Williams,
J . L.; Cross, A. J .; Green, A. R. A comparative study in rats of
the in vitro and in vivo pharmacology of the acetylcholinesterase
inhibitors tacrine, donepezil and NXX-066. Neuropharmacology
1999, 38, 181-193.
(24) Recanatini, M.; Cavalli, A. Acetylcholinesterase inhibitors in the
context of therapeutic strategies to combat Alzheimer’s disease.
Expert Opin. Ther. Pat. 2002, 12, 1853-1865.
(25) Melchiorre, C.; Andrisano, V.; Bolognesi, M. L.; Budriesi, R.;
Cavalli, A.; Cavrini, V.; Rosini, M.; Tumiatti, V.; Recanatini, M.
Acetylcholinesterase noncovalent inhibitors based on a polyamine
backbone for potential use against Alzheimer’s disease. J . Med.
Chem. 1998, 41, 4186-4189.
(26) Ildiko, M. B.; Gyorgy, T.; Sandor, M.; Tivadar, T.; Gyorgy, S.;
Eva, M. Preparation of N-disubstituted carbamoyloxy flavones
as therapeutic agents. PCT Int. Appl. WO 0224677, A1 20020328,
2002.
(27) Massoulie, J .; Sussman, J .; Bon, S.; Silman, I. Structure and
functions of acetylcholinesterase and butyrylcholinesterase.
Progr. Brain Res. 1993, 98, 139-146.
(28) Sussman, J . L.; Harel, M.; Silman, I. Three-dimensional struc-
ture of acetylcholinesterase and of its complexes with anticho-
linesterase drugs. Chem. Biol. Interact. 1993, 87, 187-197.
Ack n ow led gm en t . This investigation was sup-
ported by University of Bologna (funds for selected
research topics).
Refer en ces
(1) Hardy, J .; Selkoe, D. J . The amyloid hypothesis of Alzheimer’s
disease: progress and problems on the road to therapeutics.
Science 2002, 297, 353-356.
(2) Dominguez, D. I.; De Strooper, B. Novel therapeutic strategies
provide the real test for the amyloid hypothesis of Alzheimer’s
disease. Trends Pharmacol. Sci. 2002, 23, 324-330.
(3) Moghul, S.; Wilkinson, D. Use of acetylcholinesterase inhibitors
in Alzheimer’s disease. Expert Rev. Neurotherapeutics 2001, 1,
61-69.
(4) Soreq, H.; Seidman, S. Acetylcholinesterasesnew roles for an
old actor. Nat. Rev. Neurosci. 2001, 2, 294-302.
(5) Inestrosa, N. C.; Alvarez, A.; Perez, C. A.; Moreno, R. D.; Vicente,
M.; Linker, C.; Casanueva, O. I.; Soto, C.; Garrido, J . Acetyl-
cholinesterase accelerates assembly of amyloid-beta-peptides
into Alzheimer’s fibrils: possible role of the peripheral site of
the enzyme. Neuron 1996, 16, 881-891.
(6) De Ferrari, G. V.; Canales, M. A.; Shin, I.; Weiner, L. M.; Silman,
I.; Inestrosa, N. C. A structural motif of acetylcholinesterase that
promotes amyloid beta-peptide fibril formation. Biochemistry
2001, 40, 10447-10457.
(7) Bartolini, M.; Bertucci, C.; Cavrini, V.; Andrisano, V. Beta-
amyloid aggregation induced by human acetylcholinesterase:
inhibition studies. Biochem. Pharmacol. 2003, 65, 407-416.
(8) Castro, A.; Martinez, A. Peripheral and dual binding site
acetylcholinesterase inhibitors: implications in treatment of
Alzheimer’s disease. Mini Rev. Med. Chem. 2001, 1, 267-272.
J M0340602