L. Bonnac et al. / Bioorg. Med. Chem. Lett. 17 (2007) 4588–4591
4591
13. Choi, K. H.; Kremer, L.; Besra, G. S.; Rock, C. O. J. Biol.
Chem. 2000, 275, 28201.
14. Kremer, L.; Douglas, J. D.; Baulard, A. R.; Guy, M. R.;
Morehouse, C.; Alland, D.; Dover, L. G.; Lakey, J. H.;
Jacobs, W. R., Jr.; Brennan, P. J.; Minnikin, D. E.; Besra,
G. S. J. Biol. Chem. 2000, 275, 16857.
15. Ducasse-Cabanot, S.; Cohen-Gonsaud, M.; Marrakchi,
H.; Nguyen, M.; Zerbib, D.; Bernadou, J.; Daffe, M.;
Labesse, G.; Quemard, A. Antimicrob. Agents Chemother.
2004, 48, 242.
16. Argyrou, A.; Vetting, M. W.; Aladegbami, B.; Blanchard,
J. S. Nat. Struct. Mol. Biol. 2006, 13, 408.
was determined without considering the carbonyl oxygen
of the INH/NAD adduct, since this atom has no counter-
part in 3.
25. Dessen, A.; Quemard, A.; Blanchard, J. S.; Jacobs, W. R.,
Jr.; Sacchettini, J. C. Science 1995, 267, 1638.
26. Zatorski, A.; Watanabe, K. A.; Carr, S. F.; Goldstein, B.
M.; Pankiewicz, K. W. J. Med. Chem. 1996, 39, 2422.
27. Pankiewicz, K. W.; Lesiak, K.; Zatorski, A.; Goldstein, B.
M.; Carr, S. F.; Sochacki, M.; Majumdar, A.; Seidman,
M.; Watanabe, K. A. J. Med. Chem. 1997, 40, 1287.
28. Bonnac, L.; Chen, L.; Pathak, R.; Gao, G.; Ming, Q.;
Bennett, E.; Felczak, K.; Kullberg, M.; Patterson, S. E.;
Mazzola, F.; Magni, G.; Pankiewicz, K. W. Bioorg. Med.
Chem. Lett. 2007, 17, 1512.
17. Basso, L. A.; Zheng, R.; Musser, J. M.; Jacobs, W. R., Jr.;
Blanchard, J. S. J. Infect. Dis. 1998, 178, 769.
18. Nguyen, M.; Claparols, C.; Bernadou, J.; Meunier, B.
Chembiochem 2001, 2, 877.
29. Kristensen, J. L.; Vedso, P.; Begtrup, M. J. Org. Chem.
2003, 68, 4091.
19. Nguyen, M.; Quemard, A.; Broussy, S.; Bernadou, J.;
Meunier, B. Antimicrob. Agents Chemother. 2002, 46,
2137.
20. Broussy, S.; Coppel, Y.; Nguyen, M.; Bernadou, J.;
Meunier, B. Chemistry 2003, 9, 2034.
21. Broussy, S.; Bernardes-Genisson, V.; Quemard, A.; Meu-
nier, B.; Bernadou, J. J. Org. Chem. 2005, 70, 10502.
22. Delaine, T.; Bernardes-Genisson, V.; Meunier, B.; Berna-
dou, J. J. Org. Chem. 2007, 72, 675.
23. Such as mono- and poly-ADP-ribosylation of protein, cell
signaling ((cyclic ADP-ribose), DNA repair and recombi-
nation, and histone deacetylation catalyzed by the Sir2
family of NAD-dependent deacetylases.
30. Merchant, K. J. Tetrahedron Lett. 2000, 41, 3747.
31. Compound 1, 1H NMR (d, CD3OD), 7.99 (H2, s, 1H), 7.56
(H4, d, J = 8.4 Hz, 1H), 7.39 [H3 (OPh), d, J = 7.8 Hz, 2H],
7.18 [H4 (OPh), t, J = 7.8, 1H], 7.04 [H2 (OPh), d,
J = 7.8 Hz, 2H], 6.97 (H5, d, J = 8.4 Hz, 1H), 4.71 (H10, d,
J = 6.6 Hz, 1H), 4.0 (H20, m, 1H), 3.98 (H40, m, 1H), 3.85
(H30, m, 1H), 3.75 (H50500, m, 2H). HRMS calcd for
C18H20NO6 [M+H]+ 346.1212 found 346.1192.; Compound
3, 1H NMR (d, D2O), 8.31 (H8, Ade, s, 1H), 8.21 (H2, Ade,
s, 1H), 8.04 (H2, s, 1H), 7.30 (H4, d, J = 8.4 Hz, 1H), 7.25
(H3(OPh), d, J = 7.8 Hz, 2H), 7.05 (H4(OPh), t, J = 7.8,
1H), 6.85 (H2 (OPh), d, J = 7.8 Hz, 2H), 6.66 (H5, d,
J = 8.4 Hz, 1H), 5.87 (H10, d, J = 5.4 Hz, 1H), 4.57 (H10, d,
J = 7.2 Hz, 1H), 4.44 (ribose, m, 1H), 4.29 (ribose, m, 1H),
4.22–3.88 (ribose, m, 8H). 31P NMR (D2O) ꢀ10.18, ꢀ9.98
(d, J= 21.14). HRMS calcd for C28H31N6O15P2 [M-H]ꢀ
753.1401, found 753.1388.
32. All kinetic experiments were carried out on a Cary 300 Bio
(Varian) spectrophotometer at 25 °C. A typical reaction
mixture contained 30 mM PIPES, 150 mM NaCl, pH 8.0,
100 nM InhA, 25 lM dodecenoyl CoA, 250 lM NADH,
and a certain concentration of the inhibitor. The reaction
was initiated by the addition of InhA, and then monitored
at 340 nm. The initial velocities were measured from the
linear period of the assays (usually the first 1/2 min). The
inhibitions of InhA by compounds 1 and 2 were tested at
the specified concentration. For compound 3, inhibition
assays were carried out at different inhibitor concentration
ranging from 0 to 200 lM, and then the data were fitted
into the following equation to obtain the IC50 value:
v = v0/(1 + [I]/IC50).
24. Modeling was based on the X-ray structure of the InhA/
NAD complex (PDB entry 1ENY). The OPLS-2005 force
field and the GB/SA solvation model, as implemented in
MacroModel 9.1 (Schrodinger, Inc., 2006), were used for
all simulations. Hydrogens were added and minimized,
then the entire protein was minimized subject to a 10 kcal/
2
˚
mol-A restraint. This model was used for validation
docking of NAD. When binding to INH-NADH adducts,
Phe149 changes position to accommodate the adduct. The
protein was frozen except for residues 149, 150, and 158,
and a torsion search was performed to identify a low-
energy conformation of Phe149 similar to that seen in the
adduct X-ray structure (PDB entry 1ZID). This model was
used for docking adducts, with Phe149 and the adduct
unrestrained and the remainder of the protein frozen.
MCMM/LMCS conformational searching of adducts was
performed in blocks of 10,000 steps until (a) no new
structures within 5 kcal/mol of the global minimum were
found and (b) the rate of finding new structures within
10 kcal/mol of the global minimum decreased at least 10-
fold relative to the first block of 10,000 steps. All searches
converged after 40,000 or fewer steps. Minimizations were
33. Pankiewicz, K. W.; Lesiak-Watanabe, K. B.; Watanabe,
K. A.; Patterson, S. E.; Jayaram, H. N.; Yalowitz, J. A.;
Miller, M. D.; Seidman, M.; Majumdar, A.; Prehna, G.;
Goldstein, B. M. J. Med. Chem. 2002, 45, 703.
34. Pankiewicz, K. W.; Patterson, S. E.; Black, P. L.;
Jayaram, H. N.; Risal, D.; Goldstein, B. M.; Stuyver, L.
J.; Schinazi, R. F. Curr. Med. Chem. 2004, 11, 887.
˚
performed to a gradient of 0.05 kJ/mol-A. RMS errors for
the adducts were determined after superimposing PDB
entry 1ZID on the minimized model. The RMS error for 3