10 of 11
POURGHASEMI‐LATI ET AL.
molecule of water, 5‐arylidinebarbituric acid derivatives
(a) are achieved (Table 2, entries 1–17).
REFERENCES
[1] E. M. Grivsky, S. Lee, C. W. Sigel, D. S. Duch, C. A. Nichol,
For the three‐component reaction, the activated alde-
hyde (1) is attacked by activated malononitrile (3)
through a Knoevenagel reaction to generate intermedi-
ate (II) and, with loss of a molecule of water,
cyanoolefin (4) is achieved. In continuation, a Michael
addition occurs between (4) and (2) to generate interme-
diate (III). Then a hydrogen shift happens and the
Michael adduct tautomerizes in the presence of acidic
catalyst to generate intermediate (IV). Afterwards, it
cyclizes to give intermediate (V) which is tautomerized
to afford the pyrano[2,3‐d]pyrimidinone derivatives (b)
(Table 5, entries 1–15).
J. Med. Chem. 1980, 23, 327.
[2] D. Heber, C. Heers, U. Ravens, Pharmazie 1993, 48, 537.
[3] Y. Sakuma, M. Hasegawa, K. Kataoka, K. Hoshina, N. Kadota,
Chem. Abstr. 1991, 115, 71646.
[4] J. Davoll, J. Clarke, F. E. Eislager, J. Med. Chem. 1972, 15, 837.
[5] L. R. Bennett, C. J. Blankely, R. W. Fleming, R. D. Smith, D. K.
Tessonam, J. Med. Chem. 1981, 24, 382.
[6] E. Kretzschmer, Pharmazie 1980, 35, 253.
[7] A. H. Shamroukh, M. E. A. Zaki, E. M. H. Morsy, F. M.
AbdelMotti, F. M. E. AbdelMegeid, Arch. Pharm. 2007, 340,
236.
[8] N. R. Dighore, P. L. Anandgaonker, S. T. Gaikwad, A. S.
The recoverability of Fe3O4@SiO2‐Propyl‐Pip‐SO3H.
HSO4 was measured in the synthesis of pyrano[2,3‐d]
pyrimidine derivatives under the optimized reaction con-
ditions. This procedure was repeated five times and each
time the product was obtained using the recovered cata-
lyst with the least change in the reaction time and yield
(Fig. 7). In order to show the unique catalytic behaviour
of Fe3O4@SiO2‐Propyl‐Pip‐SO3H.HSO4 in this reaction,
we have compared our results with the results reported
using other catalysts in the synthesis of pyrano[2,3‐d]
pyrimidinone derivatives. As is evident from Table 6,
Fe3O4@SiO2‐Propyl‐Pip‐SO3H.HSO4 is the most effective
catalyst for this purpose.
Rajbhoj, Res. J. Chem. Sci. 2014, 4, 93.
[9] K. M. Khan, M. Ali, T. A. Farooqui, M. Khan, M. Tahan, S. J.
Perveen, J. Chem. Soc. Pak. 2009, 31, 823.
[10] N. Seyyedi, F. Shirini, M. Safarpoor Nikoo Langarudi, RSC Adv.
2016, 6, 44630.
[11] S. B. Rathod, A. B. Ghamhire, B. R. Arbad, M. K. Lande, Bull.
Korean Chem. Soc. 2010, 31, 339.
[12] B. F. Mirjalili, A. Bamoniri, S. M. Nezamalhosseini,
J. Nanostruct. Chem. 2015, 5, 367.
[13] J. R. Kaur, G. Kaur, Chin. J. Catal. 2013, 34, 1697.
[14] J. T. Li, M. X. Sun, Aust. J. Chem. 2009, 62, 353.
[15] J. T. Li, H. G. Dai, D. Liu, T. S. Li, Synth. Commun. 2006, 36,
789.
[16] E. A. Maadi, C. L. Matthiesen, P. Ershadi, J. Baker, D. M.
4 | CONCLUSIONS
Herron, E. M. Holt, J. Chem. Cryst. 2003, 33, 757.
[17] M. M. Heravi, K. Bakhtiari, A. Ghods, F. Derikvand, Synth.
Commun. 2010, 40, 1927.
We have developed a simple and effective method for the
synthesis of biologically and pharmacologically active 5‐
arylidinebarbituric acids and pyrano[2,3‐d]pyrimidinone
derivatives using Fe3O4@SiO2‐Propyl‐Pip‐SO3H.HSO4 as
a heterogeneous magnetic nanocatalyst in appropriate
times with excellent yields. This catalytic system offers
advantages such as mild reaction conditions, short reac-
tion times, high yields of products, easy catalyst prepara-
tion and simple separation and recovery of the catalyst
from the reaction mixture using an external magnet,
making it a useful and attractive process for the prepara-
tion of these compounds.
[18] S. Balalaie, S. Abdolmohammadi, H. R. Bijanzadeh, A. M.
Amani, Mol. Diversity 2008, 12, 85.
[19] G. M. Ziarani, S. Faramarzi, S. Asadi, A. Badiei, R. Bazl, M.
Amanlou, DARU J. Pharm. Sci. 2013, 21, 3.
[20] M. Bararjanian, S. Balalaie, B. Movassagh, A. M. Amani,
J. Iran. Chem. Soc. 2009, 6, 436.
[21] J. Yu, H. Wang, Synth. Commun. 2005, 35, 3133.
[22] A. A. Shestopalov, L. A. Rodinovskaya, A. M. Shestopalov, V. P.
Litvinov, Russ. Chem. Bull. 2004, 53, 724.
[23] H. H. Zoorob, M. Abdelhamid, M. A. El‐Zahab, M. Abdel‐
Mogib, Arzneim. Forsch. 1997, 47, 958.
[24] M. M. Heravi, A. Ghods, F. Derikvand, K. Bakhtiari, F. F.
Bamoharram, J. Iran. Chem. Soc. 2010, 7, 615.
ACKNOWLEDGEMENTS
[25] A. R. Bhata, A. H. Shallab, R. S. Dongrea, JTUSCI 2016, 10, 9.
We are grateful to the Guilan and Zanjan Universities
Research Councils for the partial support of this work.
[26] A. Mobinikhaledi, N. Foroughifar, M. A. Bodaghi Fard, Synth.
React. Inorg. Met.‐Org. Nano‐Met. Chem. 2010, 40, 179.
[27] M. F. Casula, A. Corrias, P. Arosio, A. Lascialfari, T. Sen, P.
Floris, I. J. Bruce, J. Colloid Interface Sci. 2011, 357, 50.
ORCID
[28] S. Mornet, S. Vasseur, F. Grasset, E. Duguet, J. Mater. Chem.
2004, 14, 2161.
[29] A. H. Latham, M. E. Williams, Acc. Chem. Res. 2008, 41, 411.