prodrugs will ideally not occur until the substituent at the
O2-position is cleaved in the target tissue to generate the
free ionic diazeniumdiolate (path c, Scheme 1). A specific
metabolic trigger resulting in selective removal of the O2-
protective group ensures site-directed delivery of therapeutic
NO.
Scheme 2. Synthesis of 2 and Attempted Synthesis of 6
of V-PYRRO/NO in good yield4a failed completely when
attempted with PROLI/NO (Scheme 2). The reaction of
PROLI/NO in the presence of 15-crown-5 with 2-bromo-1-
(trifluoromethanesulfonyloxy)ethane (5) also failed to pro-
duce the desired intermediate 6, necessitating a revised
strategy for the synthesis of 4 and other O2-derivatized
PROLI/NO prodrug forms.
Figure 1. PYRRO/NO, PROLI/NO, and their prodrug forms.
An agent designed for this latter approach is the O2-vinyl
derivative of PYRRO/NO (1), V-PYRRO/NO (2), which is
a NO prodrug that was shown in relevant animal models to
protect the liver in a variety of life-threatening situations,
including the ischemia-reperfusion injury associated with
organ transplantation and the toxicity of acetaminophen and
other agents (Figure 1).4
We postulated that, by diazeniumdiolating prolinol (7)
instead of proline (Scheme 3) to produce 8 as a starting
It would be desirable to modify its structure to improve
water solubility for formulation and site-directed delivery
while retaining the beneficial effects of rapid liver metabo-
lism to NO-releasing form. The diazeniumdiolate of L-
proline, PROLI/NO (3),5 is structurally similar to PYRRO/
NO, but has an additional carboxylic acid that may improve
solubility for its corresponding O2-protected prodrug forms
(Figure 1). Furthermore, this additional carboxyl functionality
serves as a synthetic handle for further derivatization by using
a peptide or polymer that potentially improves efficacy,
bioavailability, and/or site-directed delivery. Finally, the
products of decomposition of PROLI/NO are all naturally
occurring metabolites, suggesting a favorable toxicological
profile.5b Hence, V-PROLI/NO (4) may be an ideal candidate
for liver-specific delivery of therapeutic NO (Figure 2).
Unfortunately, the convenient synthetic strategy of O2-
bromoethylation/dehydrohalogenation used for the synthesis
Scheme 3. Proposed General Synthetic Route to V-PROLI/
NO (4) and other O2-Substituted PROLI/NO Derivatives
material, absence of the carboxyl group might allow substitu-
tion at the O2-position to occur without significant competing
decomposition. Subsequent oxidation of the primary alcohol
functionality might then be used to regenerate the carboxyl
group and produce the desired PROLI/NO derivative (Scheme
3).
As predicted, 4 could be prepared by this route. Treatment
of diazeniumdiolate 8 with 5 in the presence of 15-crown-5
afforded bromoethyl derivative 9 in 48% yield. Mild oxida-
tion with a modified Sharpless protocol (sodium periodate
and ruthenium trichloride)6 led to carboxylate 6 in 19% yield.
Dehydrobromination of 6 by treatment with sodium hydrox-
ide generated V-PROLI/NO in 19% yield (Scheme 4).
To examine the generality of this procedure, we reacted 8
with 2,4-dinitrofluorobenzene (FDNB). This produced 10a
in 54% yield (Table 1, entry 1), an outcome that contrasted
sharply with that seen when FDNB was reacted directly with
3. In the latter case, no combination of reaction conditions
(solvent, temperature, crown ether, or other additives) was
found that generated the desired product, 11a. Instead, the
major products isolated were N-nitrosoproline (12) and
N-(2,4-dinitrophenyl)proline (Scheme 5). Conversion of 10a
(4) (a) Saavedra, J. E.; Billiar, T. R.; Williams, D. L.; Kim, Y.-M.;
Watkins, S. C.; Keefer, L. K. J. Med. Chem. 1997, 40, 1947-1954. (b)
Liu, J.; Li, C.; Waalkes, M. P.; Clark, J.; Myers, P.; Saavedra, J. E.; Keefer,
L. K. Hepatology 2003, 37, 324-333. (c) Qu, W.; Liu, J.; Fuquay, R.;
Shimoda, R.; Sakurai, T.; Saavedra, J. E.; Keefer, L. K.; Waalkes, M. P.
Nitric Oxide Biol. Chem. 2005, 12, 114-120. (d) Inami, K.; Nims, R. W.;
Srinivasan, A.; Citro, M. L.; Saavedra, J. E.; Cederbaum, A. I.; Keefer, L.
K. Nitric Oxide Biol. Chem. 2006, 14, 309-315. (e) Ricciardi, R.; Foley,
D. P.; Quarfordt, S. H.; Saavedra, J. E.; Keefer, L. K.; Wheeler, S. M.;
Donohue, S. E.; Callery, M. P.; Meyers, W. C. Transplantation 2001, 71,
193-198.
(5) (a) Saavedra, J. E.; Southan, G. J.; Davies, K. M.; Lundell, A.;
Markou, C.; Hanson, S. R.; Adrie, C.; Hurford, W. E.; Zapol, W. M.; Keefer,
L. K. J. Med. Chem. 1996, 39, 4361-4365. (b) Waterhouse, D. J.; Saavedra,
J. E.; Davies, K. M.; Citro, M. L.; Xu, X.; Powell, D. A.; Grimes, G. J.;
Potti, G. K.; Keefer, L. K. J. Pharm. Sci. 2006, 95, 108-115. (c) Chen, C.;
Hanson, S. R.; Keefer, L. K.; Saavedra, J. E.; Davies, K. M.; Hutsell, T.
C.; Hughes, J. D.; Ku, D. N.; Lumsden, A. B. J. Surg. Res. 1997, 67, 26-
32. (d) Champion, H. C.; Bivalacqua, T. J.; Wang, R.; Kadowitz, P. J.;
Keefer, L. K.; Saavedra, J. E.; Hrabie, J. A.; Doherty, P. C.; Hellstrom, W.
J. G. J. Urol. 1999, 161, 2013-2019. (e) Bivalacqua, T. J.; Champion, H.
C.; De Witt, B. J.; Saavedra, J. E.; Hrabie, J. A.; Keefer, L. K.; Kadowitz,
P. J. J. CardioVasc. Pharmacol. 2001, 38, 120-129.
(6) Prashad, M.; Lu, S.; Kim, H. Y.; Hu, B.; Repic, O.; Blacklock, T. J.
Synth. Commun. 1999, 29, 2937-2942.
3410
Org. Lett., Vol. 9, No. 17, 2007