4.1%, which was improved by 50% relative to the unfused
porphyrin reference cell. These results clearly show that the
elongation of a porphyrin p-system with low symmetry is a useful
tactic for collecting solar light in the visible and near infrared
regions, leading to improved cell performance of porphyrin-
sensitized solar cells. Further improvement of the power conver-
sion efficiency in porphyrin-sensitized TiO2 cells will be possible by
designing a planar fused porphyrin in which a larger aromatic ring
is used as a fused moiety instead of a naphthalene ring.
This work was supported by the Strategic University/Industry
Alliance of the International Innovation Center, Kyoto University.
We gratefully acknowledge Prof. Susumu Yoshikawa (Kyoto
University) and Prof. Shozo Yanagida (Osaka University) for the
use of equipment for photovoltaic measurements. Computation
time was provided by the Supercomputer Laboratory, Institute for
Chemical Research, Kyoto University, and the Academic Center
for Computing and Media Studies, Kyoto University.
Notes and references
1 (a) B. O’Regan and M. Gra¨tzel, Nature, 1991, 353, 737; (b)
M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker,
E. Muller, P. Liska, N. Vlachopoulos and M. Gra¨tzel, J. Am. Chem.
Soc., 1993, 115, 6382.
2 (a) M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni,
G. Viscardi, P. Liska, S. Ito, B. Takeru and M. Gra¨tzel, J. Am. Chem.
Soc., 2005, 127, 16835; (b) Z.-S. Wang, H. Kawauchi, T. Kashima and
H. Arakawa, Coord. Chem. Rev., 2004, 248, 1381; (c) C.-Y. Chen,
S.-J. Wu, C.-G. Wu, J.-G. Chen and K.-C. Ho, Angew. Chem., Int. Ed.,
2006, 45, 5822; (d) K.-J. Jiang, N. Masaki, J.-B. Xia, S. Noda and
S. Yanagida, Chem. Commun., 2006, 2460; (e) M. Adachi, Y. Murata,
J. Takao, J. Jiu, M. Sakamoto and F. Wang, J. Am. Chem. Soc., 2004,
126, 14943; (f) Y. Chiba, A. Islam, R. Komiya, N. Koide and L. Han,
Appl. Phys. Lett., 2006, 88, 223505.
3 (a) K. Kalyanasundaram, N. Vlachopoulos, V. Krishnan, A. Monnier
and M. Gra¨tzel, J. Phys. Chem., 1987, 91, 2342; (b) A. Kay and
M. Gra¨tzel, J. Phys. Chem., 1993, 97, 6272; (c) G. Boschloo and
A. Goossens, J. Phys. Chem., 1996, 100, 19489; (d) Y. Tachibana,
S. A. Haque, I. P. Mercer, J. R. Durrant and D. R. Klug, J. Phys. Chem.
B, 2000, 104, 1198; (e) S. Cherian and C. C. Wamser, J. Phys. Chem. B,
2000, 104, 3624; (f) F. Odobel, E. Blart, M. Lagree, M. Villieras,
H. Boujtita, N. ElMurr, S. Caramori and C. A. Bignozzi, J. Mater.
Chem., 2003, 13, 502; (g) J. Jasieniak, M. Johnston and E. R. Waclawik,
J. Phys. Chem. B, 2004, 108, 12962; (h) Q. Wang, W. M. Campbell,
E. E. Bonfantani, K. W. Jolly, D. L. Officer, P. J. Walsh, K. Gordon,
R. Humphry-Baker, M. K. Nazeeruddin and M. Gra¨tzel, J. Phys. Chem.
B, 2005, 109, 15397.
Fig. 3 Molecular orbitals of fused-Zn-1 and Zn-1 calculated at the
B3LYP/3-21G* level.
extending the response of the photocurrent generation close to
800 nm. The improved photocurrent generation of the fused-Zn-1-
sensitized cell relative to that of the Zn-1-sensitized cell parallels the
results on the g values. To shed light on the electronic structures of
fused-Zn-1 and Zn-1, DFT calculations were performed.
Geometry optimization and vibration frequency analysis were
carried out at the B3LYP/3-21G* level. The optimized structures
have no negative frequencies. The electron densities of HOMO
and LUMO in fused-Zn-1 are delocalized over the elongated p
system (Fig. 3), which is in good agreement with the UV–visible
absorption and fluorescence spectra and the electrochemical
studies. It should be noted here that there are significant electron
densities on the carboxyl group in LUMO of fused-Zn-1, whereas
no apparent electron densities are seen on the carboxy group in
LUMO of Zn-1. The comparison supports efficient electron
injection from the porphyrin excited singlet state to the CB of the
TiO2 electrode in the fused-Zn-1-sensitized cell owing to the strong
electronic coupling between the porphyrin and the TiO2 surface
through the carboxyl group. Thus, the strong electronic coupling
also rationalizes the higher g value of the fused-Zn-1-sensitized cell
in comparison with the Zn-1-sensitized cell. On the other hand, the
porphyrin plane of fused-Zn-1 is strained due to the steric
hindrance between the b-proton and that of the fused naphthalene
ring compared to that of Zn-1. The strain of the porphyrin ring is
likely to cause fast nonradiative relaxation in the porphyrin excited
singlet state, resulting in moderate improvement of the power
conversion efficiency.
4 (a) M. Gouterman, J. Chem. Phys., 1959, 30, 1139; (b) M. Goutherman,
J. Mol. Spectrosc., 1961, 6, 138; (c) H. L. Anderson, Inorg. Chem., 1994,
33, 972; (d) H. L. Anderson, Chem. Commun., 1999, 2323.
5 (a) O. Yamane, K. Sugiura, H. Miyasaka, K. Nakamura, T. Fujimoto,
K. Nakamura, T. Kaneda, Y. Sakata and M. Yamashita, Chem. Lett.,
2004, 33, 40; (b) K. Sugiura, T. Matsumoto, S. Ohkouchi, Y. Naitoh,
T. Kawai, Y. Takai, K. Ushiroda and Y. Sakata, Chem. Commun., 1999,
1957; (c) A. Tsuda, H. Furuta and A. Osuka, J. Am. Chem. Soc., 2001,
123, 10304; (d) A. N. Cammaidge, P. J. Scaife, G. Berber and
D. L. Hughes, Org. Lett., 2005, 7, 3413; (e) K. Kurotobi, K. S. Kin,
S. B. Noh, D. Kim and A. Osuka, Angew. Chem., Int. Ed., 2006, 45, 3944.
6 A. Huijser, T. J. Savenije, J. E. Kroeze and L. D. A. Siebbeles, J. Phys.
Chem. B, 2005, 109, 20166.
7 H. Imahori, S. Hayashi, T. Umeyama, S. Eu, A. Oguro, S. Kang,
Y. Matano, T. Shishido, S. Ngamsinlapasathian and S. Yoshikawa,
Langmuir, 2006, 22, 11405.
8 P. V. Kamat, M. Haria and S. Hotchandani, J. Phys. Chem. B, 2004, 108,
5166.
In conclusion, we have successfully synthesized a novel
unsymmetrically p-elongated porphyrin to apply it to a dye-
sensitized TiO2 solar cell for the first time. The porphyrin-
sensitized TiO2 cell exhibited a power conversion efficiency of
9 S. Nakade, M. Matsuda, S. Kambe, Y. Saito, T. Kitamura, T. Sakata,
Y. Wada, H. Mori and S. Yanagida, J. Phys. Chem. B, 2002, 106, 10004.
This journal is ß The Royal Society of Chemistry 2007
Chem. Commun., 2007, 2069–2071 | 2071