Angewandte
Chemie
Keywords: addition · aldehydes · enones ·
.
homogeneous catalysis · ruthenium
[1] a) Transition Metals for Organic Synthesis, Vol.1 and 2 (Eds.: M.
Beller, C. Bolm), Wiley-VCH, Weinheim, 1998; b) Applied
Homogeneous Catalysis with Organometallic Compounds, Vol.1
and 2 (Eds.: B. Cornils, W. A. Herrmann), VCH, Weinheim,
1996.
[2] For recent work on the preparation of 1,3-diketones, see a) S.
Kamijo, G. B. Dudley, Org.Lett. 2006, 8, 175; b) C. Wiles, P.
Watts, S. J. Haswell, E. Pombo-Villar, Tetrahedron Lett. 2002, 43,
2945; c) V. Fargeas, M. Baalouch, E. Metay, J. Baffreau, D.
MØnard, P. Gosselin, J.-P. BergØ, C. Barthmeuf, J. Lebreton,
Tetrahedron 2004, 60, 10359; d) Z. Shen, B. L. Lu, Y. Zhang,
Tetrahedron Lett. 2005, 46, 8785; e) K.-H. Park, L. J. Cox,
Tetrahedron Lett. 2003, 44, 1067; f) K. Miura, M. Tojino, N.
Fujisawa, A. Hosomi, I. Ryu, Angew.Chem. 2004, 116, 2477;
Angew.Chem.Int.Ed. 2004, 43, 2423; see also the original work:
g) G. Stork, R. Terrell, J.Am.Chem.Soc. 1954, 76, 2029.
[3] For recent methods for preparing 2-alkyl-substituted 1,3-dike-
tones based on the catalytic alkylation of 1,3-diketones, see a) Z.
Li, C. J. Li, J.Am.Chem.Soc. 2006, 128, 56; b) X. Yao, C. J. Li, J.
Am.Chem.Soc. 2004, 126, 6884; c) X. Yao, C. J. Li, J.Org.
Chem. 2005, 70, 5752; d) T. Pei, R. A. Widenhoefer, J.Am.
Chem.Soc. 2001, 123, 11290.
[4] For examples of transition-metal-catalyzed hydroacylation of
enones leading to 1,4-diketones, see a) M. C. Willis, S. Sapmaz,
Chem.Commun. 2001, 2558; b) E.-A. Jo, C.-H. Jun, Eur.J.Org.
Chem. 2006, 2504.
[5] For our previous work on the use of the ruthenium hydride
catalyst, see a) T. Doi, T. Fukuyama, S. Minamino, G. Husson, I.
Ryu, Chem.Commun. 2006, 1875; b) T. Doi, T. Fukuyama, J.
Horiguchi, T. Okamura, I. Ryu, Synlett 2006, 721; c) T. Doi, T.
Fukuyama, S. Minamino, I. Ryu, Synlett 2006, 3013.
Scheme 2. Possible reaction mechanism.
the envisaged tetracarbonyl compound 3o was obtained
(77% yield).
To get some insight into the mechanism, we carried out a
separate experiment using [D]benzaldehyde (2a’). Deute-
rium was introduced mainly at the b-carbon atom of the
enone (65%), which lends support for the proposed mech-
anism, however, deuterium incorporation at the a-carbon
atom was also observed (35%). This finding may suggest that
a hydroruthenation step leading to b-Ru ketones also exists in
rapid equilibrium, which allows for the introduction of
deuterium into the a-position of 1a by a back b-hydride
elimination (Scheme 2). Thus, the hydroruthenation of
enones gives two types of ruthenium enolates, A and
A’,[11,12] which then undergo an aldol reaction with the
aldehydes to give b-keto alkoxyruthenium complexes B and
B’. A b-elimination then takes place to give the 1,3-diketones
C and C’, with regeneration of the ruthenium hydride catalyst
for use in further reactions.
[6] T. Fukuyama, Y. Higashibeppu, R. Yamaura, I. Ryu, Org.Lett.
2007, 9, 587.
[7] Using a similar system comprising a,b-unsaturated ketones,
aldehydes, and [RuH2(PPh3)4] under neat conditions, a Morita–
Baylis—Hillman-type reaction was reported to take place, with
PPh3 playing a role, see S. Sato, I. Matsuda, M. Shibata, J.
Organomet.Chem. 1989, 377, 347.
[8] For a system using PPh3 and p-nitrophenol, see M. Shi, Y.-H. Liu,
Org.Biomol.Chem. 2006, 4, 1468.
[9] We thank one of the referees for calling our attention to the
mechanistic possibility in our system.
[10] a) H. Wakamatsu, M. Nishida, N. Adachi, M. Mori, J.Org.
Chem. 2000, 65, 3966; b) S. Krompiec, M. Pigulla, W. Szczepan-
kiewicz, T. Bieg, N. Kuznik, K. Leszczynska-Sejda, M. Kubicki,
T. Borowiak, Tetrahedron Lett. 2001, 42, 7095; c) N. Kuznik, S.
Krompiec, T. Bieg, S. Baj, K. Skutil, A. Chrobok, J.Organomet.
Chem. 2003, 665, 167.
In summary, we have reported a novel regioselective
addition reaction of aldehydes to enones, which provides an
atom-economic and straightforward access to a wide variety
of 2-alkyl-substituted 1,3-diketones. Synthetic applications of
the present reaction as well as detailed mechanistic studies
are currently underway.
[11] For examples of catalytic transformations based on ruthenium
enolates, see a) S.-I. Murahashi, T. Naota, H. Taki, M. Mizuno,
H. Takaya, S. Komiya, Y. Mizuho, N. Oyasato, M. Hiraoka, M.
Hirano, A. Fukuoka, J.Am.Chem.Soc. 1995, 117, 12436; b) R.
Uma, M. Davies, C. CrØvisy. R. GrØe, Tetrahedron Lett. 2001, 42,
Experimental Section
General procedure for the synthesis of 2-substituted 1,3-diketones
catalyzed by [RuHCl(CO)(PPh3)3]: A mixture of ethyl vinyl ketone
(1a; 86 mg, 1.03 mmol), benzaldehyde (2a; 138 mg, 1.3 mmol), and
[RuHCl(CO)(PPh3)3] (96.0 mg, 0.1 mmol) in benzene (3.75 mL) was
stirred at reflux for 5 h under nitrogen. Purification by column
chromatography on silica gel using 2% AcOEt in hexane as the
eluent gave 2-propanoylpropiophenone (3a) (149 mg, 76%).
3069; c) B. M. Trost A. B. Pinkerton, J.Am.Chem.Soc.
2000,
122, 8081; d) S. Chang, Y. Na, E. Choi, S. Kim, Org.Lett. 2001, 3,
2089; e) H. Wang, M. Watanabe, T. Ikariya, Tetrahedron Lett.
2005, 46, 963.
[12] For isolated ruthenium enolate complexes, see a) J. F. Hartwig,
R. A. Andersen, G. B. Bergman, J.Am.Chem.Soc. 1990, 112,
5670; b) J. F. Hartwig, R. G. Bergman, R. A. Andersen, Organo-
metallics 1991, 10, 3326; c) B. T. Tasley, M. Rapta, R. J. Kulawiec,
Organometallics 1996, 15, 2852.
Received: March 7, 2007
Published online: June 20, 2007
Angew. Chem. Int. Ed. 2007, 46, 5559 –5561
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
5561