D. Ganame et al. / Tetrahedron Letters 48 (2007) 5841–5843
5843
References and notes
+
( )-15
7
Pd(PPh3)2Cl2
CuI, NEt3
1. Reichenbach, H. J. Ind. Microbiol. Biotechnol. 2001, 27,
149–156.
2. Jansen, R.; Kunze, B.; Reichenbach, H.; Ho¨fle, G. Eur. J.
Org. Chem. 2002, 917–921.
3. Kunze, B.; Jansen, R.; Hofle, G.; Reichenbach, H. J.
Antibiot. 2004, 57, 151–155.
4. Krebs, O.; Taylor, R. J. K. Org. Lett. 2005, 7, 1063–
1066.
79%
Me
N
O
OMe
Me
BnO
N
O
Me
25
H2, P-2 Ni
EDA, EtOH
55%
Me
N
OMe
Me
O
5. Sonogashira, K. In Comprehensive Organic Synthesis;
Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford,
1991; Vol. 3, p 521.
18
17
O
BnO
N
( )-4
Me
´
6. Chinchilla, R.; Najera, C. Chem. Rev. 2007, 107, 874–
Scheme 5. Synthesis of the C9–C29 fragment 4 of ajudazol B.
922.
7. Wipf, P.; Lim, S. J. Am. Chem. Soc. 1995, 117, 558–559;
Wipf, P.; Graham, T. J. Org. Chem. 2001, 66, 3242–
3245.
+
20
7
8. Pettigrew, J. D.; Freeman, R. P.; Wilson, B. D. Cancer J.
Chem. 2004, 82, 1640–1648.
9. Yenjai, C.; Isobe, M. Tetrahedron 1998, 54, 2509–
2520.
10. Smissman, E. E.; Voldeng, A. N. J. Org. Chem. 1964, 29,
3161–3165.
11. Aoyagi, Y.; Saitoh, Y.; Ueno, T.; Horiguchi, M.; Takeya,
K.; Williams, R. M. J. Org. Chem. 2003, 68, 6899–6904.
12. Dotz, K. H.; Popall, M. Tetrahedron 1985, 41, 5797–
5802.
Pd(PPh3)2Cl2
CuI, NEt3
O
77%
Me
N
OMe
Me
BnO
N
O
26
OH
2) MsCl, pyr.
3) DBU
1) H2, P-2 Ni
EDA, EtOH
Me
N
OMe
Me
O
15
O
BnO
13. McDougal, P.; Rico, J.; Oh, Y.-I.; Condon, B. J. Org.
Chem. 1986, 51, 3388–3390.
N
3
32% overall
14. Brown, C. A.; Ahuja, V. K. J. Org. Chem. 1973, 38, 2226–
2230.
Scheme 6. Synthesis of the C9–C29 fragment 3 of ajudazol A.
utilized P-2 Ni for the partial hydrogenation of a
skipped diyne to afford a Z,Z-diene.16 The catalyst can
be generated by the NaBH4 mediated reduction of
Ni(OAc)2 in ethanol under a hydrogen atmosphere.14,15
Partial hydrogenation of alkyne 25 proceeded well in the
presence of P-2 Ni and ethylenediamine to afford the de-
sired ajudazol B side-chain 417 in 55% yield along with a
small amount of the C17–C18 fully saturated product.
This produced racemic 4, however, it should be noted
that both enantiomers of the real alkyne fragment 6
could be synthesized as demonstrated in the synthesis
of both R and S-15.
15. Brown, C. A.; Ahuja, V. K. J. Chem. Soc., Chem.
Commun. 1973, 553–554.
16. Feutrill, J. T.; Rizzacasa, M. A. Aust. J. Chem. 2003, 56,
783–785.
17. Data for compound 4: IR mmax (film): 2918, 2851, 1738,
1
1647, 1601, 1459, 1238, 1104 cmÀ1; H NMR (800 MHz,
acetone-d6) d 1.27 (d, J = 7.0 Hz, 3H), 1.88–1.91 (m, 2H),
2.14 (m, 2H) 2.14 (br s, 3H), 2.26 (dt, J = 7.4, 7.4 Hz, 2H),
2.49 (m, 1H), 2.55 (td, J = 7.5, 1.0 Hz, 2H), 2.61 (m, 1H),
2.84 and 2.85 (br s, 3H), 2.99 (m, 1H), 3.51 (t, J = 6.2 Hz,
2H), 3.59 (br s, 3H), 3.92 (dd, J = 6.0, 1.0 Hz, 2H), 4.50 (s,
2H), 5.32 and 5.35 (each br s, 1H), 5.42 (dt, J = 10.0,
7.9 Hz, 1H), 5.48 (dt, J = 9.5, 8.1 Hz, 1H), 5.51 (m, 1H),
5.60 (m, 1H), 6.28 (ddd, J = 11.3, 11.3, 1.0 Hz, 1H), 6.32
(t, J = 11.1 Hz, 1H), 7.26–7.36 (m, 5H), 7.49 (t, J = 1 Hz,
1H); 13C NMR (200 MHz, acetone-d6) d 18.3, 18.7, 23.6,
27.9, 29.3, 32.8, 33.4, 33.5, 34.6, 49.2 and 52.4 (br), 55.3,
70.1, 73.2, 92.2, 124.7, 126.2, 126.9, 128.1, 128.2, 128.9,
129.0, 132.3, 132.7, 134.6, 140.0, 141.0, 167.6, 167.7 and
167.9 (br), 168.81 and 168.83 (br); HRMS (ESI) Calcd for
C31H43N2O4 [M+H+]: 507.3223. Found: 507.3225.
The synthesis of the ajudazol A fragment 3 is outlined in
Scheme 6. Sonogashira coupling between 20 and iodide
7 proceeded smoothly to afford enyne 26 in good yield.
Partial hydrogenation with P-2 Ni as catalyst followed
by mesylation of the primary alcohol and DBU induced
elimination18 afforded the target compound 3.19 At-
tempts at introducing the C15 alkene prior to coupling
and hydrogenation failed to afford 3.
18. Doi, T.; Yoshida, M.; Shin-ya, K.; Takahashi, T. Org.
Lett. 2006, 8, 4165–4167.
19. Data for compound 3: IR mmax (film): 2925, 2856, 1723,
1
1646, 1605, 1455, 1248, 1107 cmÀ1; H NMR (400 MHz,
In conclusion, we have developed a route to the C9–C29
fragments 3 and 4 of ajudazols A (1) and B (2). The key
steps involve a high yielding Sonogashira coupling and
P-2 Ni mediated partial hydrogenation. The synthesis
of the isochromanone fragment of 1 and 2 is currently
underway in our laboratories.
DMSO-d6 85 °C): d 1.83–1.90 (m, 2H), 2.08 (s, 3H), 2.10–
2.13 (m, 2H), 2.22–2.27 (m, 2H), 2.54 (t, J = 7.2 Hz, 2H),
2.84 (s, 3H), 3.33 (d, J = 7.6 Hz, 2H), 3.50 (t, J = 6.4 Hz,
2H), 3.56 (s, 3H), 3.87 (d, J = 5.2 Hz, 2H), 4.47 (s, 2H),
5.28 (s, 1H), 5.37 (s, 1H), 5.35–5.61 (m, 4H), 5.87 (s, 1H),
6.33 (m, 1H), 6.35 (m, 1H), 7.24–7.35 (m, 5H), 7.69 (s,
1H); 13C NMR (200 MHz, DMSO-d6 55 °C): d 18.6, 22.8,
26.8, 27.2, 28.4, 30.4, 31.6, 33.3 and 35.0 (br), 48.5 and
51.8 (br), 55.3, 69.2, 72.2, 92.0, 117.5, 124.1, 125.6, 126.2,
126.3, 127.7, 128.0, 129.0, 132.1, 134.4, 135.3, 139.1, 141.5,
161.2, 166.9, 167.3. HRMS (ESI) Calcd for
C31H40N2O4Na [M+Na+]: 527.2886. Found: 527.2882.
Acknowledgment
We thank the Australian Research Council Discovery
Grants Scheme (DP0556064) for funding.