H. M. Chawla et al. / Tetrahedron Letters 48 (2007) 6054–6058
6057
7602–7605; (d) Beer, P. D.; Gale, P. A.; Hesek, D.
Tetrahedron Lett. 1995, 36, 767–770; (e) Cameron, B. R.;
Loeb, S. J. Chem. Commun. 1997, 573–574; (f) Wu, J. L.;
He, Y. B.; Zeng, Z. Y.; Wei, L. H.; Meng, L. Z.; Yang, T.
X. Tetrahedron 2004, 60, 4309–4314.
white solids. Selected analytical data for compounds 4a–d
are given below: Compound 4a: yield (88%); mp =
267 5 ꢁC. IR (KBr): 3336 (OH); 1689 (C@O); 1605
(C@N). Anal. Calcd for C50H50N6O8: C, 69.59; H, 5.84;
N, 9.74. Found: C, 69.30; H, 5.92; N, 9.59. FAB-MS m/z
Calcd: 862. Found 863 (M+H+). 1H NMR (300 MHz,
CDCl3): d 2.30–2.34 (m, 4H, –CH2–CH2–CH2–), d 3.29 (d,
4H, J = 12.8 Hz, Ar–CH2–Ar), d 3.92 (t, 4H, J = 5.4 Hz,
–OCH2), d 4.14 (d, 4H, J = 12.8 Hz, Ar–CH2–Ar), d 4.23
(t, 4H, J = 5.6 Hz, –CH2O), d 5.77 (br s, 4H, D2O
exchange –NH2), d 6.56 (t, 2H, J = 7.2 Hz, Ar-H), d 6.66
(t, 2H, J = 7.3 Hz, Ar-H), d 6.74 (d, 4H, J = 8.3 Hz, Ar-
Hbenzaldehyde), d 6.84 (d, 4H, J = 7.4 Hz, Ar-H), d 6.96 (d,
9. (a) Wu, F. Y.; Li, Z.; Wen, Z. C.; Zhou, N.; Zhao, Y. F.;
Jiang, Y. B. Org. Lett. 2002, 4, 3203–3205; (b) Cho, E. J.;
Moon, J. W.; Ko, S. W.; Lee, J. Y.; Kim, S. K.; Yoon, J.;
Nam, K. C. J. Am. Chem. Soc. 2003, 125, 12376–12377; (c)
Kim, K. S.; Yoon, J. Chem. Commun. 2002, 770–771; (d)
Dudic, M.; Lhotak, P.; Stibor, I.; Lang, K.; Proskova, P.
Org. Lett. 2003, 5, 149–152.
10. (a) Iqbal, M.; Mangiafico, T.; Gutsche, C. D. Tetrahedron
1987, 43, 4917–4930; (b) Li, Z. T.; Ji, G. H.; Zhao, C. X.;
Yuan, S. D.; Ding, H.; Huang, C.; Du, A. L.; Wei, M. J.
Org. Chem. 1999, 64, 3572–3584.
4H, J = 7.3 Hz, Ar-H),
d 7.37 (d, 4H, J = 8.3 Hz,
Ar-Hbenzaldehyde), d 7.59 (s, 2H, –CHN), d 8.12 (s, 2H,
D2O exchange –OH), d 10.09 ( s, 2H, D2O exchange
–NH). 13C NMR (CDCl3): d 29.7, 31.2, 64.8, 72.5, 114.7,
119.2, 125.7, 128.7, 128.5, 129, 131.9, 133.1, 151.2, 152.9,
163.7, 190.7.
Compound 4b: yield (78%); mp = 263 4 ꢁC. IR (KBr):
3408 (OH); 1702 (C@O); 1602 (C@N). Anal. Calcd for
C52H54N6O8: C, 70.09; H, 6.11; N, 9.43. Found: C, 69.98;
H, 6.01; N, 9.59. FAB-MS m/z Calcd: 890. Found 891
(M+H+). 1H NMR (300 MHz, CDCl3): d 2.02 (s, 6H,
–CCH3), d 2.32–2.36 (m, 4H,–CH2–CH2–CH2–), d 3.30 (d,
4H, J= 12.1 Hz, Ar–CH2–Ar), d 3.92 (br s, 4H, –OCH2), d
4.18 (d, 4H, J = 12.1 Hz, Ar–CH2–Ar), d 4.29 (br s, 4H,
–CH2O), d 6.32 (br s, 4H, D2O exchange –NH2), d
6.84–6.89 (m, 12H, Ar-H), d 6.97 (d, 4H, J = 8.3 Hz,
11. General procedure for the synthesis of compounds 3a,b:
A
mixture of 2 (1.17 mmol), potassium carbonate
(7.19 mmol) and p-hydroxybenzaldehyde (or p-hydroxy-
acetophenone) (4.5 mmol) was stirred under reflux in
20 mL of anhydrous acetonitrile for 48 h. The reaction
mixture was cooled to room temperature and then
carefully neutralized with dilute hydrochloric acid and
extracted with chloroform. The organic layer was washed
with water, dried over Na2SO4 and evaporated to dryness.
The white solid residue was purified by column chroma-
tography on silica gel using hexane/ethyl acetate (gradient
from 9.5:0.5 to 8:2) as eluent. Selected analytical data for
compounds 3a,b are given below: Compound 3a: yield
(86%); mp >240 ꢁC. IR (KBr): 3360 (OH); 1689 (C@O).
Anal. Calcd for C48H44O8: C, 76.99; H, 5.92. Found: C,
76.69; H, 5.76. FAB-MS m/z Calcd: 748. Found 748
(M+). 1H NMR (300 MHz, CDCl3): d 2.36 (q, 4H,
Ar-Hacetophenone),
d
7.47 (d, 4H, J = 8.3 Hz,
Ar-Hacetophenone), d 8.27 (s, 2H, D2O exchange –OH), d
8.45 (s, 2H, D2O exchange –NH). 13C NMR (CDCl3): d
26.4, 29.7, 31.2, 64.8, 72.5, 114.7, 119.2, 125.7, 128.7,
128.5, 129.0, 131.9, 133.1, 151.2, 152.9, 163.7, 195.7.
Compound 4c: yield (82%); mp = 261 5 ꢁC. IR (KBr):
3304 (OH); 1089 (C@S); 1604 (C@N). Anal. Calcd for
C50H50N6O6S2: C, 67.09; H, 5.63; N, 9.39. Found: C,
67.18; H, 5.82; N, 9.14. FAB-MS m/z Calcd: 894. Found
J = 5.9 Hz, –CH2–CH2–CH2–),
d
3.36 (d, 4H,
J = 12.9 Hz, Ar–CH2–Ar), d 4.12 (t, 4H, J = 5.5 Hz,
–OCH2), d 4.20 (d, 4H, J = 12.9 Hz, Ar–CH2–Ar), d
4.48 (t, 4H, J = 6.2 Hz, –CH2O), d 6.64 (t, 2H, J = 7.3 Hz,
Ar-H), d 6.72 (t, 2H, J = 7.6 Hz, Ar-H), d 6.90 (d, 4H,
J = 7.4 Hz, Ar-Hbenzaldehyde), d 7.03 (d, 4H, J = 7.2 Hz,
Ar-H), d 7.06 (d, 4H, J = 7.1 Hz, Ar-H), d 7.79 (d, 4H,
J = 7.4 Hz, Ar-Hbenzaldehyde), d 8.01 (s, 2H, D2O exchange
–OH), d 9.83 (s, 2H, CHO). 13C NMR (CDCl3): d 29.7,
31.3, 64.8, 72.5, 114.8, 119.7, 125.7, 127.8, 128.6, 129.6,
131.9, 133.1, 151.2, 152.9, 191.8.
1
895 (M+H+). H NMR (300 MHz, (CD3)2CO): d 2.45 (q,
4H, J = 5.6 Hz, –CH2–CH2–CH2–),
d 3.44 (d, 4H,
J = 12.8 Hz, Ar–CH2–Ar), d 4.23 (t, 4H, J = 4.2 Hz,
–OCH2), d 4.30 (d, 4H, J = 12.8 Hz, Ar–CH2–Ar), d
4.56 (t, 4H, J = 4.1 Hz, –CH2O), d 6.58 (t, 2H, J = 7.3 Hz,
Ar-H), d 6.69 (t, 2H, J = 7.4 Hz, Ar-H), d 7.00 (d, 4H,
Compound 3b: yield (83%); mp >245 ꢁC. IR (KBr): 3336
(OH); 1675 (C@O). Anal. Calcd for C50H48O8: C, 77.30;
H, 6.23. Found: C, 77.18; H, 5.86. FAB-MS m/z Calcd:
776. Found 777 (M+H+). 1H NMR (300 MHz, CDCl3): d
2.28–2.32 (m, 4H, –CH2–CH2–CH2–), d 2.41 (s, 6H,
–COCH3), d 3.28 (d, 4H, J = 12.9 Hz, Ar–CH2–Ar), d 4.04
(t, 4H, J = 5.1 Hz, –OCH2), d 4.14 (d, 4H, J = 12.9 Hz,
Ar–CH2–Ar), d 4.38 (t, 4H, J = 6.2 Hz, –CH2O), d 6.55 (t,
2H, J = 7.4 Hz, Ar-H), d 6.63 (t, 2H, J = 7.6 Hz, Ar-H), d
6.81 (d, 4H, J = 7.4 Hz, Ar-H), d 6.89 (d, 4H, J = 8.4 Hz,
Ar-Hacetophenone), d 6.95 (d, 4H, J = 7.5 Hz, Ar-H), d 7.80
(d, 4H, J = 8.4 Hz, Ar-Hacetophenone), d 7.96 (s, 2H, D2O
exchange –OH). 13C NMR (CDCl3): d 26.2, 29.7, 31.2,
64.7, 72.6, 114.1, 115, 119.2, 125.6, 127.8, 128.4, 129.0,
130.3, 130.5, 133.1, 151.2, 153.0, 162.7, 196.8.
J = 7.5 Hz, Ar-H),
d
7.07 (d, 4H, J = 8.3 Hz,
Ar-Hbenzaldehyde), d 7.12 (d, 4H, J = 7.4 Hz, Ar-H), d
7.40 (br s, 4H, D2O exchange –NH2), d 7.73 (d, 4H,
J = 8.3 Hz, Ar-Hbenzaldehyde), d 8.09 (s, 2H, –CHN), d 8.38
(s, 2H, D2O exchange –OH), d 10.34 (s, 2H, D2O exchange
–NH). 13C NMR ((CD3)2CO): d 29.7, 30.9, 64.7, 72.9,
114.9, 119.2, 125.3, 127.9, 128.6, 129.0, 129.2, 142.6, 146.2,
150.2, 205.4.
Compound 4d: yield (79%); mp = 266 5 ꢁC. IR (KBr):
3336 (OH); 1091 (C@S); 1587 (C@N). Anal. Calcd for
C52H54N6O6S2: C, 67.65; H, 5.90; N, 9.10. Found: C,
67.48; H, 5.85; N, 9.31. FAB-MS m/z Calcd: 922. Found
1
923 (M+H+). H NMR (300 MHz, (CD3)2CO): d 2.21 (s,
6H, –CCH3), d 2.42–2.46 (m, 4H, J = 5.4 Hz, –CH2–CH2–
CH2–), d 3.42 (d, 4H, J = 12.7 Hz, Ar–CH2–Ar), d 4.21 (t,
4H, J = 4.0 Hz, –OCH2), d 4.33 (d, 4H, J = 12.7 Hz, Ar–
CH2–Ar), d 4.58 (t, 4H, J = 4.2 Hz, –CH2O), d 6.56 (t, 2H,
J = 7.4 Hz, Ar–H), d 6.63 (t, 2H, J = 7.5 Hz, Ar-H), d 7.12
(d, 4H, J = 7.5 Hz, Ar-H), d 7.17 (d, 4H, J = 8.3 Hz,
Ar-Hacetophenone), d 7.22 (d, 4H, J = 7.4 Hz, Ar-H), d 7.42
(br s, 4H, D2O exchange –NH2), d 7.78 (d, 4H, J = 8.3 Hz,
Ar-Hacetophenone), d 8.36 (s, 2H, D2O exchange –OH), d
10.32 (s, 2H, D2O exchange –NH). 13C NMR ((CD3)2CO):
d 27.2, 29.4, 30.4, 65.7, 73.6, 114.4, 117.6, 125.7, 126.9,
128.7, 129.3, 129.8, 145.2, 149.2, 200.4.
12. Zengin, G.; Huffman, J. W. Turk. J. Chem. 2006, 30, 139–
144.
13. General procedure for the synthesis of compounds 4a–d: A
solution of 3a–b (1.3 mmol) in 20 mL of methanol was
treated with 17.0 mL of semicarbazide/thiosemicarbazide
solution.12 The mixture was refluxed on a water bath
(50 ꢁC) until crystallization began. Further crystallization
was allowed to continue at room temperature and the
product obtained was filtered and dried under vacuum to
give calix[4]arene-bis(semicarbazone) derivatives 4a–d as