Angewandte
Chemie
proved to be the most compatible one in this sequence among
a variety of alternatives such as TBS, PMB, and MOM. We
first tried to synthesize vinyliodide 4 by Takai iodoolefina-
tion.[21] However, all attempts gave 4 in low yields only (18%)
although with a high E:Z ratio (> 40:1). In a more convenient
approach, aldehyde 21 was converted into the alkyne 22 by a
Colvin rearrangement using TMSCHN2/nBuLi.[22] The more
popular Corey–Fuchs homologation[23] turned out to be very
sluggish and required repeated chromatographic purification.
Finally, 22 was hydrozirconated with the Schwartz reagent
according to a protocol devised by Negishi et al.[24] The
organozirconium intermediate was quenched with iodine to
give E vinyliodide 4 (66%, E:Z > 50:1).
ing. In this connection, stereochemical variations as well as
modifications of the C12–C16 side chain will be examined.
Received: March 10, 2007
Published online: June 26, 2007
Keywords: aldol reaction · asymmetric synthesis · macrolides ·
.
polyketides · total synthesis
[1] a)T. Springer, Cell 1994, 76, 301 – 314; b)E. C. Butcher, L. J.
Picker, Science 1996, 272, 60 – 66; c)A. Varki, Proc. Natl. Acad.
Sci. USA 1994, 91, 7390 – 7397.
[2] M. P. Schön, T. Krahn, M. Schön, M.-L. Rodriguez, H. Antoni-
cek, J. E. Schultz, R. J. Ludwig, T. M. Zollner, E. Bischoff, K.-D.
Bremm, M. Schramm, K. Henninger, R. Kaufmann, H. P. M.
Gollnick, C. M. Parker, W.-H. Boehncke, Nat. Med. 2002, 8,
366 – 372.
For the coupling of C11 and C12 (Scheme 6)we first
attempted a CrCl2/NiCl2-mediated Nozaki–Hiyama–Kishi
reaction,[25] which gave diallylic alcohol 23 in a disappoint-
[3] G. Todderud, X. Nair, D. Lee, J. Alford, L. Davern, P. Stanley, C.
Bachand, P. Lapointe, A. Marinier, A. Martel, M. Menard, J. J.
Wright, J. Bajorath, D. Hollenbaugh, A. Aruffo, K. M. Tram-
posch, J. Pharmacol. Exp. Ther. 1997, 282, 1298 – 1304.
[4] A. von Bonin, B. Buchmann, B. Bader, A. Rausch, K. Venstrom,
M. Schäfer, S. Gründemann, J. Günther, L. Zorn, R. Nubbe-
meyer, K. Asadullah, T. M Zollner, Nat. Med. 2006, 12, 873 – 874.
[5] B. Buchmann et al., 18. Irseer Naturstofftage der DECHEMA
e.V. 2006, poster session and private communication.
[6] P. Hammann, G. Kretzschmar, Z. Naturforsch. B 1990, 45, 515 –
517.
[7] Isolation of 2: a)F. M. Arcamone, C. Bertazzoli, M. Ghione,
T. G. Scotti, Giorn. Microbiol. 1959, 7, 207 – 216; b)M. Arai, J.
Antibiot. Ser. A 1960, 13, 46 – 50.
[8] Total synthesis of 2: a)K. Toshima, K. Tatsuta, M. Kinoshita,
Bull. Chem. Soc. Jpn. 1988, 61, 2369 – 2381; total syntheses of the
aglycon of 2: b)D. Seebach, H.-F. Chow, R. F. W. Jackson, K.
Lawson, M. A. Sutter, S. Thaisrivongs, J. Zimmermann, J. Am.
Chem. Soc. 1985, 107, 5292 – 5293; c)D. A. Evans, D. M. Fitch, J.
Org. Chem. 1997, 62, 454 – 455; d)I. Paterson, D.-G. Lombart, C.
Allerton, Org. Lett. 1999, 1, 19 – 22.
Scheme 6. The final C11–C12 bond connection. Reagents and condi-
tions: a) 4, CrCl2, NiCl2, THF, DMF, RT (34%); b) 22, [Cp2Zr(H)Cl],
THF, RT, then Et2Zn, ꢀ788C, toluene, then 3, RT (<5%); c) 4, tBuLi,
Et2O, ꢀ788C, then 3, ꢀ788C!08C (89%); d) Dess–Martin period-
inane, CH2Cl2, 08C!RT (82%); e) 70% HF·pyridine, THF, MeCN, RT
(70%). DMF=N,N-dimethylformamide.
[9] For a discussion of symmetry-based synthesis, see C. R. Poss,
S. L. Schreiber, Acc. Chem. Res. 1994, 27, 9 – 17.
[10] Preparation of aldehyde 9a: J. Hassfeld, M. Kalesse, Synlett
2002, 2007 – 2010.
[11] Preparation of aldehyde 9b: PP. R. R. Meira, L. C. Diaz, J. Org.
Chem. 2005, 70, 4762 – 4773.
[12] D. A. Evans, H. P. Ng, S. Clark, D. L. Rieger, Tetrahedron 1992,
48, 2127 – 2142.
[13] a)D. A. Evans, K. T. Chapman, E. M. Carreira, J. Am. Chem.
Soc. 1988, 110, 3560 – 3578. b)NaBH(OAc) 3 gave higher yields
than the corresponding tetramethylammonium salt.
[14] Y. Oikawa, T. Yoshioka, O. Yonemitsu, Tetrahedron Lett. 1982,
23, 889 – 892.
ingly low yield of 34%. Hydrozirconation of alkyne 22
followed by transmetalation with Et2Zn[26] and addition to 3
failed (< 5%). Finally, lithiation of vinyliodide 4 with tBuLi
and subsequent addition of 3 gave 23 in excellent yield (89%)
as a statistical 2:1:1 mixture of stereoisomers. The macro-
lactone carbonyl functions were completely unreactive even
in the presence of excess vinyllithium reagent. Oxidation of
the diastereomeric mixture to give enone 24 followed by
desilylation with 70% HF·pyridine in MeCN/THF gave 1 in
57% yield over two steps. The use of TBAF resulted in
elimination to give the 10E,12E dienone, whereas AcOH-
buffered TBAF gave no reaction at all. The 1H and 13C NMR,
IR, and mass spectra and the optical rotation of our synthetic
sample of 1 were in complete agreement with those obtained
from authentic material.[27]
[15] S. Takano, M. Akiyama, S. Sato, K. Ogasawara, Chem. Lett.
1983, 1593 – 1596.
[16] E. Buchta, F. Andree, Chem. Ber. 1959, 92, 3111 – 3116.
[17] a)K. Sato, S. Mizuno, M. Hirayama, J. Org. Chem. 1967, 32, 177 –
180; b)W. R. Roush, J. Am. Chem. Soc. 1980, 102, 1390 – 1404.
[18] a)T. Yano, Y. Himeno, H. Nozaki, J. Otera, Tetrahedron Lett.
1986, 27, 4501 – 4504; b)Q. Su, A. B. Beeler, E. Lobkovsky, J. A.
Porco, Jr., J. S. Panek, Org. Lett. 2003, 5, 2149 – 2152.
[19] a)J. Inanaga, K. Hirata, H. Saeki, T. Katsuki, M. Yamaguchi,
Bull. Chem. Soc. Jpn. 1979, 52, 1989 – 1993; b)H. Tone, T. Nishi,
Y. Oikawa, M. Hikota, O. Yonemitsu, Tetrahedron Lett. 1987, 28,
4569 – 4572; c)Macrolactonization according to the Yamaguchi
protocol was expected to be more compatible with our system
In conclusion, we have completed the first total synthesis
of efomycine M (1)by a convergent approach in 17 steps over
the longest linear sequence in 7% overall yield. Currently we
are extending our stereo- and regiocontrolled synthesis for
the preparation of simplified analogues for biological screen-
Angew. Chem. Int. Ed. 2007, 46, 5791 –5794
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
5793