spectroscopic grade DMF. The porphyrins were placed into a low power
(60 W) sonic bath for about 1 h in order to obtain homogenous and
complete dissolution.
1 For reviews, see: S. M. O’Flaherty, S. V. Hold, M. J. Cook, T. Torres,
Y. Chen, M. Hanack and W. J. Blau, Adv. Mater., 2003, 15, 19;
C. Sanchez, B. Lebeau, F. Chaout and J. P. Boilot, Adv. Mater., 2003,
15, 1969; G. de la Torre, P. Vazquez, F. Agullo-Lopez and T. Torres,
Chem. Rev., 2004, 104, 3723; S. R. Marder, Chem. Commun., 2006, 131.
2 M. Pizzotti, R. Ugo, E. Annoni, S. Quici, I. Ledoux-Rak, G. Zerbi,
M. Del Zoppo, P. Fantucci and I. Invernizzi, Inorg. Chim. Acta, 2002,
340, 70; E. Annoni, M. Pizzotti, R. Ugo, S. Quici, T. Morotti,
M. Bruschi and P. Mussini, Eur. J. Inorg. Chem., 2005, 3857; R. Misra,
R. Kumar, V. PrabhuRaja and T. K. Chandrashekar, J. Photochem.
Photobiol., A, 2005, 175, 108; P. C. Ray and J. Leszczynski, Chem. Phys.
Lett., 2006, 419, 578.
3 M. G. H. Vicente and K. M. Smith, Curr. Org. Chem., 2000, 4, 139; The
Porphyrin Handbook, ed. K. M. Kadish, K. M. Smith and R. Guilard,
Academic Press, San Diego, CA, 2000; 2004.
4 (a) M. Ravikanth and T. K. Chandrashekar, Struct. Bonding, 1995, 82,
105; (b) M. O. Senge, Chem. Commun., 2006, 243.
Fig. 4 Plots of normalized transmission against pulse energy density for
3 at laser intensities at I0–1 = y0.07 GW cm21, I0–2 = y0.2 GW cm21 and
I0–3 = y0.5 GW cm21
.
5 W. Blau, H. Byrne, W. M. Dennis and J. M. Kelly, Opt. Commun.,
1985, 56, 25.
6 S. M. O’Flaherty, J. J. Doyle and W. J. Blau, J. Phys. Chem. B, 2004,
108, 17313.
intensity is further increased to y0.4 GW cm21, the SA behavior
increases symmetrically. At low fluence, y0.07–0.13 GW cm21, a
three-level model was successfully used to mathematically describe
the resulting NLO behavior.
7 (a) S. Venkatraman, R. Kumar, J. Sankar, T. K. Chandrashekar,
K. Sendhil, C. Vijayan, A. Kelling and M. O. Senge, Chem.–Eur. J.,
2004, 10, 1423; H. Rath, J. Sankar, V. PrabhuRaja, T. K.
Chandrashekar, A. Nag and D. Goswami, J. Am. Chem. Soc., 2005,
127, 11608; (b) Z. S. Yoon, J. H. Kwon, M. C. Yoon, M. K. Koh,
S. B. Noh, J. L. Sessler, J. T. Lee, D. Seidel, A. Aguilar, S. Shimizu,
M. Suzuki, A. Osuka and D. Kim, J. Am. Chem. Soc., 2006, 128, 14128;
(c) Y. Matsuzaki, A. Nogami, A. Tsuda, A. Osuka and K. Tanaka,
J. Phys. Chem. A, 2006, 110, 4888; (d) H. L. Anderson, S. J. Martin and
D. D. C. Bradley, Angew. Chem., Int. Ed. Engl., 1994, 33, 655;
S. M. Kuebler, R. G. Denning and H. L. Anderson, J. Am. Chem. Soc.,
2000, 122, 339; M. Drobizhev, Y. Stepanenko, Y. Dzenis, A. Karotki,
A. Rebane, P. N. Taylor and H. L. Anderson, J. Phys. Chem. B, 2005,
109, 7223; R. Misra, R. Kumar, T. K. Chandrashekar, C. H. Suresh,
A. Nag and D. Goswani, J. Am. Chem. Soc., 2006, 128, 16083; R. Misra,
R. Kumar, T. K. Chandrashekar, A. Nag and D. Goswani, Org. Lett.,
2006, 8, 629.
At very high inputs, (0.5 GW cm21) a high intensity nonlinear
response was observed which may be connected to a photo-
chemical reaction of the excited state of the molecule, leading to
the formation and accumulation of a new product within the
experimental lifetime. As the intensity increased the behavior
switched to SA from RSA, most likely due to two-photon
absorption or excited state absorption. At very high intensities the
behavior was dominated by SA. In these A2B2-type porphyrins the
RSA/SA/RSA switch at the focal point regime is fully reversible.
The Z-scan data plotted as normalized transmission as a
function of incident energy per pulse for 1 are depicted in Fig. 4
and show a characteristic form for all the A2B2-type porphyrins
investigated. As the intensity increases the RSA nonlinear optical
response becomes weaker whereupon SA occurs.
8 K. S. Suslick, C. T. Chen, G. R. Meredith and L. T. Cheng, J. Am.
Chem. Soc., 1992, 114, 6928.
9 L. Karki, F. W. Vance, J. T. Hupp, S. M. Lecours and M. J. Therien,
J. Am. Chem. Soc., 1998, 120, 2606; G. Rojo, G. de la Torre, J. Garcia-
Ruiz, I. Ledoux, T. Torres, J. Zyss and F. Agullo-Lopez, Chem. Phys.,
1999, 245, 27; P. C. Ray and Z. Sainudeen, J. Phys. Chem. A, 2006, 110,
12342.
10 M. Yeung, A. C. H. Ng, M. G. B. Drew, E. Vorpagel, E. M. Breitung,
R. J. McMahon and D. K. P. Ng, J. Org. Chem., 1998, 63, 7143;
T. Morroti, M. Pizzotti, R. Ugo, S. Quici, M. Bruschi, P. Mussini and
S. Righetto, Eur. J. Inorg. Chem., 2006, 1743; M. Drobizhev, F. Q. Meng,
A. Rebane, Y. Stepanenko, E. Nickel and C. W. Spangler, J. Phys.
Chem. B, 2006, 110, 9802.
11 K. Sugiura, Y. Fujimoto and Y. Sakata, Chem. Commun., 2000, 1105;
A. N. Cammidge and O. Ozturk, Tetrahedron Lett., 2001, 42, 355;
R. P. Brinas and C. Bru¨ckner, Tetrahedron, 2002, 58, 4375.
12 (a) A. Wiehe, C. Ryppa and M. O. Senge, Org. Lett., 2002, 4, 3807;
S. Hatscher and M. O. Senge, Tetrahedron Lett., 2003, 44, 157;
C. Ryppa, M. O. Senge, S. S. Hatscher, E. Kleinpeter, P. Wacker,
U. Schilde and A. Wiehe, Chem.–Eur. J., 2005, 11, 3427; (b) M. O. Senge,
Acc. Chem. Res., 2005, 38, 733.
13 (a) R. F. Heck, Acc. Chem. Res., 1979, 12, 146; A. Suzuki, J. Organomet.
Chem., 1999, 576, 147; (b) H. Ali and J. E. Van Lier, Tetrahedron, 1994,
50, 11933; K. S. Chan, X. Zhou, B. S. Luo and T. C. W. Mak, J. Chem.
Soc., Chem. Commun., 1994, 271; B. L. Shi and R. W. Boyle, J. Chem.
Soc., Perkin Trans. 1, 2002, 1397; J. Setsune, J. Porphyrins
Phthalocyanines, 2004, 8, 93; (c) C. Ryppa, Dr. rer. Nat. Thesis, Freie
Universita¨t Berlin, 2005.
A new type of push–pull porphyrins has been synthesized using
Suzuki and Heck coupling reaction conditions. Our Z-scan
experiments have revealed interesting features of nonlinear
absorption properties for this series of A2B2-type porphyrins. At
532 nm the nonlinear processes are studied under ns irradiation, a
non-resonant absorption. RSA was observed at low fluence
intensities and at higher intensities SA followed by RSA again.
This tight focal switch regime was shown to occur at high
intensities symmetrically. Hence, porphyrins of this type offer a
significant degree of design flexibility and thus potential to
fabricate practical optical materials.
We thank Science Foundation Ireland for financial support
through grants SFI 04/RP1/B482 and SFI 06/RFP/CHO044 and
Frontier Scientific Inc. for generously supplying boronic acids and
esters.
Notes and references
{ The experiments were performed using y6 ns Gaussian pulses from a
Q-switched Nd:YAG laser. The beam was spatially filtered to remove the
higher modes and tightly focussed with a 9 cm focal length lens. The laser
was operated at its second harmonic, 532 nm, with a pulse repetition rate of
10 Hz. The irradiation at 532 nm is a no resonant excitation. The
measurements were carried out in solution in a quartz cuvette of 1 mm path
length containing porphyrins in a concentration of y4 6 1024 mol L21 in
14 (a) M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan and E. W.
Van Stryland, IEEE J. Quantum Electron., 1990, 26, 760; (b)
S. O’Flaherty, S. V. Hold, M. J. Cook, T. Torres, Y. Chen,
M. Hanack and W. J. Blau, Adv. Mater., 2003, 15, 19.
2168 | Chem. Commun., 2007, 2166–2168
This journal is ß The Royal Society of Chemistry 2007