ORGANIC
LETTERS
2008
Vol. 10, No. 4
621-623
Synthesis of C5-Symmetric
Functionalized [60]Fullerenes by
Copper-Mediated 5-Fold Addition of
Reformatsky Reagents
Takahiro Nakae, Yutaka Matsuo,* and Eiichi Nakamura*
Nakamura Functional Carbon Cluster Project, ERATO, Japan Science and Technology
Agency, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
matsuo@chem.s.u-tokyo.ac.jp; nakamura@chem.s.u-tokyo.ac.jp
Received December 4, 2007
ABSTRACT
A variety of Reformatsky reagents were added five times to [60]fullerene in good yield in the presence of a stoichiometric amount of a
copper(I) complex. The penta-addition products C60(CH2CO2R)5H (R Et, t-Bu, CH2CF3, (CH2CH2O)2Et, and CH2CH2CCSiMe3) can then be converted
to the corresponding penta-hapto metal complexes. When the R group is a ( )-menthyl group, the corresponding metal complex comprises
an organometallic complex with a coordination sphere consisting of a homochiral C5-symmetric environment.
)
−
Polyfunctionalized fullerene materials have received much
attention because of various applications in the life and
materials sciences.1 For the synthesis of such materials,
control of regioselectivity when introducing multiple func-
tional groups is a key issue2-5 and may be achieved, for
instance, by the addition of multifunctional tethered reactants6
or by multiple additions of monofunctional reactants.7 Penta-
addition reactions of organocopper reagents that selectively
introduce five organic groups around one pentagon are
interesting examples of the latter category.8 The reaction is
extremely selective and high yielding and can be carried out
readily on a multigram scale. The functional group tolerance
is also quite high as exemplified by the synthesis of C60(C6H4-
CO2Et)5H from the corresponding ethyl 4-magneciobenzoate.8c
One major limitation of this copper route, however, is that
one can introduce aryl, alkenyl, methyl, and silylmethyl
(1) (a) Hirsch, A.; Brettreich, M. Fullerenes: Chemistry and Reactions;
Wiley-VCH: Weinheim 2005. (b) Kadish, K. M.; Ruoff, R. S. Fullerenes:
Chemistry, Physics, and Technology; John Wiley & Sons: New York, 2000.
(c) Hirsch, A. The Chemistry of Fullerenes; Theme: Stuttgart, 1994. (d)
The Chemistry of Fullerenes; Taylor, R., Ed.; World Scientific: River Edge,
NJ, 1995.
(6) (a) Isaacs, L.; Haldimann, R. F.; Diederich, F. Angew. Chem., Int.
Ed. Engl. 1994, 33, 2339-2342. (b) Diederich, F.; Kessinger, R. Acc. Chem.
Res. 1999, 32, 537-545. (c) Nakamura, E.; Isobe, H.; Tokuyama, H.;
Sawamura, M. Chem. Commun. 1996, 1747-1748. (d) Isobe, H.; Tokuyama,
H.; Sawamura, M.; Nakamura, E. J. Org. Chem. 1997, 62, 5034-5041.
(7) (a) Hirsch, A. Top. Curr. Chem. 1999, 199, 1-65. (b) Lamparth, I.;
Maichle-Mo¨ssmer, C.; Hirsch, A. Angew. Chem., Int. Ed. Engl. 1995, 34,
1607-1609. (c) Hirsch, A.; Vostrowsky, O. Eur. J. Org. Chem. 2001, 829-
848. (d) Lamparth, I.; Herzog, A.; Hirsch, A. Tetrahedron 1996, 52, 5065-
5075. (e) Camps, X.; Hirsch, A. J. Chem. Soc., Perkin Trans. 1 1997, 1595-
1596.
(2) (a) Wang, G.-W.; Murata, Y.; Komatsu, K.; Wan, T. S. M. Chem.
Commun. 1996, 2059-2060. (b) Allard, E.; Delaunay, J.; Cousseau, J. Org.
Lett. 2003, 5, 2239-2242. (c) Wang, Z.; Meier, M. S. J. Org. Chem. 2003,
68, 3043-3048.
(3) Wang, G.-W.; Zhang, T.-H.; Cheng, X.; Wang, F. Org. Biomol. Chem.
2004, 2, 1160-1163.
(4) Allard, E.; Rivie`re, L.; Delaunay, J.; Dubois, D.; Cousseau, J.
Tetrahedron Lett. 1999, 40, 7223-7226.
(8) (a) Sawamura, M.; Iikura, H.; Nakamura, E. J. Am. Chem. Soc. 1996,
118, 12850-12851. (b) Matsuo, Y.; Muramatsu, A.; Tahara, K.; Koide,
M.; Nakamura, E. Org. Synth. 2006, 83, 80-87. (c) Zhong, Y.-W.; Matsuo,
Y.; Nakamura, E. Org. Lett. 2006, 8, 1463-1466.
(5) Zhang, T.-H.; Wang, G.-W.; Lu, P.; Li, Y.-J.; Peng, R.-F.; Liu, Y.-
C.; Murata, Y.; Komatsu, K. Org. Biomol. Chem. 2004, 2, 1698-1702.
10.1021/ol702874w CCC: $40.75
© 2008 American Chemical Society
Published on Web 01/23/2008