Dehydrobenzopyrid[15]annulenes
FIGURE 1. (a) Conjugated pathways present in structurally related
tetrakis(phenylethynyl)benzenes and bis(dehydrobenzoannuleno)ben-
zenes and (b) donor/acceptor tetrakis(arylethynyl)benzenes with dibu-
tylaniline donors and pyridine acceptors.
of fundamental study into aromaticity and enforced planariza-
tion. We have also performed studies on donor/acceptor-
functionalized DBAs that undergo intramolecular charge transfer
upon optical excitation, as well as studies of their acyclic
tetrakis(arylethynyl)benzene analogues (TAEBs) with variation
of the acceptor group. Most recently, we reported a systematic
study of isomeric pyridine-derivatized bisdonor/bisacceptor
TAEBs (Figure 1b).4d We demonstrated that these systems
underwent two-stage fluorescence emission shifting (to varying
extents corresponding to charge-transfer pathway efficiency)
upon titration with acid or addition of assorted metal ions, and
FIGURE 2. Fifteen-membered carbon macrocycle DBAs (1), tert-
butyl functionalized DBPAs (2), and target donor-functionalized DBPAs
(3).
that these shifts correlated to the relative energies of the spatially
separate frontier molecular orbitals (FMOs). Thus, the segment-
localized FMOs in conjugated donor/acceptor fluorophores could
be manipulated independently.9
We have previously examined DBAs of the type 1, incor-
porating solublizing t-Bu groups or electron-donating NBu2
groups, as well as isomers of t-Bu-functionalized dehydroben-
zopyridannulenes (DBPAs) 2, fused at either the 2,6- or 3,5-
positions (Figure 2).10a-c Tobe et al. have also prepared
[15]DBAs in the course of examining more complex cyclophane
architectures,10d and Baxter et al. have synthesized several
related pyridannulene structures.5e We now present donor-
functionalized DBPAs of the type 3, which incorporate the
aforementioned switching behavior into 15-membered acetylenic
macrocycles. As moderate strength acceptors, pyridines can
participate in various degrees of intramolecular charge transfer,
depending on the efficiency of the conjugated pathway from
the donor to the acceptor nitrogen.4d Since both donor and
acceptor group(s) can be protonated, the ability to probe
independent manipulation of the FMOs using shifts in the
emission spectra can also be demonstrated.
(5) (a) Bunz, U. H. F.; Rubin, Y.; Tobe, Y. Chem. Soc. ReV. 1999, 107-
119. (b) Haley, M. M.; Wan, W. B. In AdVances in Strained and Interesting
Organic Molecules; Halton, B., Ed.; JAI Press: Greenwich, CT, 2000; Vol.
8, pp 1-41. (c) Watson, M. D.; Fechtenko¨tter, A.; Mu¨llen, K. Chem. ReV.
2001, 101, 1267-1300. (d) Nielsen, M. B.; Diederich, F. In Modern Arene
Chemistry; Astruc, D., Ed.; Wiley-VCH: Weinheim, Germany, 2002; pp
196-216. (e) Baxter, P. N. W.; Dali-Youcef, R. J. Org. Chem. 2005, 70,
4935-4953.
(6) Inter alia: (a) Zhao, Y.; Slepkov, A. D.; Akoto, C. O.; McDonald,
R.; Hegmann, F. A.; Tykwinski, R. R. Chem. Eur. J. 2005, 11, 321-329.
(b) Bunz, U. H. F. AdV. Polym. Sci. 2005, 177, 1-52. (c) Fasina, T. M.;
Collings, J. C.; Lydon, D. P.; Albesa-Jove, D.; Batsanov, A. S.; Howard, J.
A. K.; Nguyen, P.; Bruce, M.; Scott, A. J.; Clegg, W.; Watt, S. W.; Viney,
C.; Marder, T. B. J. Mater. Chem. 2004, 14, 2395-2404. (d) Boydston, A.
J.; Yin, Y.; Pagenkopf, B. L. J. Am. Chem. Soc. 2004, 126, 3724-3725.
(e) Gonzalo-Rodriguez, J.; Esquivias, J.; Lafuente, A.; Diaz, C. J. Org.
Chem. 2003, 68, 8120-8128. (f) Bunz, U. H. F. Chem. ReV. 2000, 100,
1605-1644. (g) Tykwinski, R. R.; Gubler, U.; Martin, R. E.; Diederich,
F.; Bosshard, C.; Gu¨nter, P. J. Phys. Chem. B 1998, 102, 4451-4465. (h)
Tykwinski, R. R.; Schreiber, M.; Carlo´n, R. P.; Diederich, F.; Gramlich,
V. HelV. Chim. Acta 1996, 79, 2249-2280. (i) Tahara, K.; Furukawa, S.;
Uji-i, H.; Uchino, T.; Ichikawa, T.; Zhang, J.; Mamdouh, W.; Sonoda, M.;
De Schryver, F. C.; De Feyter, S.; Tobe, Y. J. Am. Chem. Soc. 2006, 128,
16613-16625.
Results and Discussion
Synthesis. Assembly of 3a and 3b is readily accomplished
as shown in Scheme 1. Donor-functionalized alkyne segment
44a is appended to either 2,6- or 3,5-dibromopyridine 5 by using
methanolic KOH to remove the more labile trimethylsilyl (TMS)
(7) (a) Slepkov, A.; Marsden, J. A.; Miller, J. J.; Shirtcliff, L. D.; Haley,
M. M.; Kamada, K.; Tykwinski, R. R.; Hegmann, F. A. Nonlinear Optical
Transmission and Multiphoton Processes in Organics III. Proc. SPIE 2005,
5934, 29-34. (b) Zhang, X.-B.; Feng, J.-K.; Ren, A.-M.; Sun, C.-C. Opt.
Mater. 2007, 29, 955-962. (c) Slepkov, A.; Hegmann, F. A.; Tykwinski,
R. R.; Kamada, K.; Ohta, K.; Marsden, J. A.; Spitler, E. L.; Miller, J. J.;
Haley, M. M. Opt. Lett. 2006, 31, 3315-3317.
(9) (a) Wilson, J. N.; Bunz, U. H. F. J. Am. Chem. Soc. 2005, 127, 4124-
4125. (b) Zucchero, A. J.; Wilson, J. N.; Bunz, U. H. F. J. Am. Chem. Soc.
2006, 128, 11872-11881. (c) Wilson, J. N.; Josowicz, M.; Wang, Y. Q.;
Bunz, U. H. F. Chem. Commun. 2003, 2962-2963.
(8) (a) Bazan, G. C.; Bartholomew, G. P. J. Am. Chem. Soc. 2002, 124,
5183-5196. (b) Bazan, G. C.; Bartholomew, G. P. Synthesis 2002, 1245-
1255. (c) Nguyen, P.; Lesley, G.; Marder, T. B. Chem. Mater. 1997, 9,
406-408. (d) Meier, H.; Mu¨hling, B.; Kolshorn, H. Eur. J. Org. Chem.
2004, 1033-1042. (e) Meier, H.; Gerold, J.; Kolshorn, H.; Mu¨hling, B.
Chem. Eur. J. 2004, 10, 360-370. (f) Zimmerman, B.; Baranovic, G.;
Stefanic, Z.; Rozman, M. J. Mol. Struct. 2006, 794, 115-124. (g)
Wakabayashi, S.; Kato, Y.; Mochizuki, K.; Suzuki, R.; Matsumoto, M.;
Sugihara, Y.; Shimizu, M. J. Org. Chem. 2007, 72, 744-749.
(10) (a) Johnson, C. A.; Haley, M. M.; Rather, E.; Han, F.; Weakley, T.
J. R. Organometallics 2005, 24, 1161-1172. (b) Johnson, C. A.; Baker, B.
A.; Berryman, O. B.; Zakharov, L. N.; O’Connor, M. J.; Haley, M. M. J.
Organomet. Chem. 2006, 691, 413-421. (c) Marsden, J. A.; Miller, J. J.;
Haley, M. M. Angew. Chem., Int. Ed. 2004, 43, 1694-1697. (d) Tobe, Y.;
Kishi, J.; Ohki, I.; Sonoda, M. J. Org. Chem. 2003, 68, 3330-3332.
(11) Calculated from the steady-state spectra with the techniques
described in: Drushel, H. V.; Sommers, A. L.; Cox, R. C. Anal. Chem.
1963, 35, 2166-2172.
J. Org. Chem, Vol. 72, No. 18, 2007 6693