literature contains only three different graphyne substructures
composed of fused tribenzo[12]cyclyne (2) subunits. The
short conjugation pathways of the reported substructures,
none of which are greater than two diphenylacetylene units
in linear length (n ) 2; e.g., 3, Figure 1), are not sufficient
substructure topologies. The length of our previous intra-
molecular approach3a for 3d as well as the dependence on
probability of intermolecular routes3c,d make these techniques
impractical for preparing 4 and 5. The synthetic challenge
associated with higher degrees of symmetry and construction
of the monoyne linkage of subunit 2 appeared straightfor-
wardly addressed with alkyne metathesis, which in recent
years has seen an extensive increase in catalyst development7-9
and use in macrocyclization.3c,9,10 Alkyne metathesis dis-
played an unprecedented efficiency for o-benzocyclyne
synthesis,3c,9c as shown by Vollhardt’s preparation of 3d in
6% yield via 6-fold intermolecular metathesis of 1,2-
dipropynylbenzene and 1,2,4,5-tetrapropynylbenzene. The
three-step route afforded an identical overall yield (4.4%)
to our first isolation of 3d by an 11-step convergent
pathway.3a We hypothesized that an intramolecular route
combining the efficiency of alkyne metathesis with pre-
organized propynyl groups would provide superior access
to graphyne substructures. Production of graphyne biscyclyne
3 via this new route and comparison to previous syntheses3a,c,d
was conducted to evaluate this assertion. Alkyl groups were
incorporated into the substructure’s peripheral arene rings
to combat expected solubility problems.
Synthesis of tetrabutylbiscyclyne 3a began with diyne 6a,
available in five steps (55% yield) from 4-butylaniline (see
the Supporting Information). Desilylation of 6a with base
followed by 4-fold Pd-catalyzed cross-coupling with 1,2,4,5-
tetraiodobenzene11 gave penultimate octayne 7a in 73% yield
(Scheme 1). Treatment of 7a with Schrock’s W-alkylidyne
catalyst7 at 80 °C afforded cycle 3a, with 50 mol % catalyst
loading and 3.3 mM reaction concentration providing the
highest yield (46%). Three components were recovered from
each experimental trial, all readily identifiable by fluorescent
emission color: biscyclyne 3a (green), oligomer (turquoise),
and starting material (6a, blue). Reaction monitoring by TLC
showed that product distribution did not change after 3 h,
suggesting that the catalyst had possibly become inactive.
This result seems to confirm reports that 2-butyne polymer-
izes in the presence of Mo(VI) and W(VI) complexes and
can deactivate the alkylidyne by a ring expansion polymer-
ization mechanism.9a,e
Figure 1. Target graphyne substructures 3-5.
to extrapolate electronic properties of the bulk network. Work
by our laboratory4 and others2a,3f,6 has shown that linear
phenylacetylene conjugation length dominates electronic
properties over the extent of conjugation for isomeric
substructures. We therefore sought to extend the length of
the linear conjugation pathway at least 2-fold beyond the
current limit. Substructures 4 (n ) 3) and 5 (n ) 4) were
proposed to accomplish this investigation (Figure 1).
In addition to isolating both 4 and 5, we sought to develop
a general method for construction of larger graphyne
The poor solubility of 3a prompted us to investigate
alternate solubilizing groups and substitution patterns. Both
(3) (a) Kehoe, J. M.; Kiley, J. H.; English, J. J.; Johnson, C. A.; Petersen,
R. C.; Haley, M. M. Org. Lett. 2000, 2, 969-972. (b) Eickmeier, C.; Junga,
H.; Matzger, A. J.; Scherhag, F.; Shim, M.; Vollhardt, K. P. C. Angew.
Chem., Int. Ed. Engl. 1997, 36, 2103-2108. (c) Miljanic, O. S.; Vollhardt,
K. P. C.; Whitener, G. D. Synlett 2003, 29-34. (d) Iyoda, M.; Sirinintasak,
S.; Nishiyama, Y.; Vorasingha, A.; Sultana, F.; Nakao, K.; Kuwatani, Y.;
Matsuyama, H.; Yoshida, M.; Miyake, Y. Synthesis 2004, 1527-1531. (e)
Sonoda, M.; Sakai, Y.; Yoshimura, T.; Tobe, Y.; Kamada, K. Chem. Lett.
2004, 33, 972-973. (f) Yoshimura, T.; Inaba, A.; Sonoda, M.; Tahara, K.;
Tobe, Y.; Williams, R. V. Org. Lett. 2006, 8, 2933-2936.
(7) (a) Schrock. R. R. Acc. Chem. Res. 1986, 19, 342-348. (b) Schrock.
R. R. Polyhedron 1995, 14, 3177-3195.
(8) (a) Kloppenburg, L.; Song, D.; Bunz, U. H. F. J. Am. Chem. Soc.
1998, 120, 7973-7974. (b) Brizius, G.; Bunz, U. H. F. Org. Lett. 2002, 4,
2829-2831. (c) Sashuk, V.; Ignatowska, J.; Grela, K. J. Org. Chem. 2004,
69, 7748-7751. (d) Maraval, V.; Lepetit, C.; Camanade, M.-N.; Majoral,
J.-P.; Chauvin, R. Tetrahedron Lett. 2006, 47, 2155-2159.
(9) (a) Zhang, W.; Kraft, S.; Moore, J. S. J. Am. Chem. Soc. 2004, 126,
329-335. (b) Zhang, W.; Moore, J. S. J. Am. Chem. Soc. 2005, 127, 11863-
11870. (c) Zhang, W.; Brombosz, S. M.; Mendoza, J. L.; Moore, J. S. J.
Org. Chem. 2005, 70, 10198-10201. (d) Cho, H. M.; Weissman, H.;
Wilson, S. R.; Moore, J. S. J. Am. Chem. Soc. 2006, 128, 14742-14743.
(e) Zhang, W.; Moore, J. S. AdV. Synth. Catal. 2007, 349, 93-120.
(10) Inter alia: (a) Fu¨rstner, A. Angew. Chem., Int. Ed. 2000, 39, 3012-
3043. (b) Fu¨rstner, A.; Mathes, C.; Lehmann, C. W. Chem. Eur. J. 2001,
7, 5299-5317. (c) Fu¨rstner, A.; Castanet, A.-S.; Radkowski, K.; Lehmann,
C. W. J. Org. Chem. 2003, 68, 1521-1528. (d) Ghalit, N.; Poot, A. J.;
Fu¨rstner, A.; Rijkers, D. T. S.; Liskamp, R. M. J. Org. Lett. 2005, 7, 2961-
2964. (e) Vintonyak, V. V.; Maier, M. E. Org. Lett. 2007, 9, 655-658.
(11) Mattern, D. L.; Chen, X. J. Org. Chem. 1991, 56, 5903-5907.
(4) (a) Spitler, E. L.; Johnson, C. A.; Haley, M. M. Chem. ReV. 2006,
106, 5344-5386. (b) Marsden, J. A.; Haley, M. M. J. Org. Chem. 2005,
70, 10213-10226.
(5) Miljanic, O. S.; Vollhardt, K. P. C. In Carbon-Rich Compounds: From
Molecules to Materials; Haley, M. M., Tykwinski, R. R., Eds.; Wiley-
VCH: New York, 2006; pp 140-197.
(6) (a) Tykwinski, R. R.; Schreiber, M.; Carlon, R. P.; Diederich, F.;
Gramlich, V. HelV. Chim. Acta 1996, 79, 2249-2281. (b) Tykwinski, R.
R.; Schreiber, M.; Gramlich, V.; Seiler, P.; Diederich, F. AdV. Mater. 1996,
8, 226-231. (c) Rodriguez, J. G.; Esquivias, J.; Lafuente, A.; Diaz, C. J.
Org. Chem. 2003, 86, 8120-8128. (d) Meier, H.; Mu¨hling, B.; Kolshorn,
H. Eur. J. Org. Chem. 2004, 1033-1042. (e) Zucchero, A. J.; Wilson, J.
N.; Bunz, U. H. F. J. Am. Chem. Soc. 2006, 128, 11872-11881.
3726
Org. Lett., Vol. 9, No. 19, 2007