Scheme 1
ibility, but applications to total synthesis have lagged because
trisubstituted piperidine precursor A, which in turn would
derive from oxidative cleavage of the C6-C7 bond of an
isoquinoline such as B (Scheme 1). We envisaged an efficient
access to the isoquinoline ring system through Mn-mediated
radical addition to construct either of the two C-C bonds at
the C3 stereogenic carbon (disconnections a and b). The
stereoselective radical addition would be followed by closed-
shell nucleophilic displacement of a leaving group X by the
imino nitrogen to complete the piperidine heterocycle.
Some important aspects of this strategy warrant specific
mention. First, the Mn-mediated coupling enables interchange
of the iodide and hydrazone functionality, such that either
component could serve as radical precursor or acceptor. Thus,
the choice of path a or b is flexible, to be defined at the
benchtop according to optimal yields or selectivities. Second,
the strategy reveals a common precursor C, for which C2
symmetry could be exploited in an efficient access to both
sets of coupling components. Finally, if the chiral auxiliary
X* is the dominant control element (as was expected from
all available precedents), then the enantiomeric iodide (e.g.,
ent-C) could generate the C8-C3/4 stereochemical relation-
ship of quinidine.
methods exhibiting versatility with respect to both radical
and acceptor are limited.10 The emergence of Mn-mediated
photolytic initiation of these intermolecular radical additions
has addressed this problem to some extent, enabling ap-
plication to precursors bearing electrophilic functionality in
either of the coupling components.11 Quinine presented an
ideal challenge to the applicability of these Mn-mediated
coupling reactions to synthetic problems in a multifunctional
molecular setting.
Our approach to quinine focuses on strategic application
of our Mn-mediated hybrid radical-ionic annulation, a
radical-polar crossover reaction,12 which had previously
been described for preparation of simple pyrrolidines and
piperidines.11a,b Employing Stork’s disconnection of the
azabicyclo[2.2.2]octane ring system suggested a 2,4,5-
(9) For other applications of chiral N-acylhydrazones, see the following.
(a) Allylsilane additions: Friestad, G. K.; Ding, H. Angew. Chem., Int. Ed.
2001, 40, 4491-4493. Friestad, G. K.; Korapala, C. S.; Ding, H. J. Org.
Chem. 2006, 71, 281-289. (b) Radical additions: Ferna´ndez, M.; Alonso,
R. Org. Lett. 2003, 5, 2461-2464. (c) Allylindium additions: Cook, G.
R.; Maity, B. C.; Kargbo, R. Org. Lett. 2004, 6, 1749-1752. (d) Mannich-
type reactions: Jacobsen, M. F.; Ionita, L.; Skrydstrup, T. J. Org. Chem.
2004, 69, 4792-4796. (e) Strecker reactions: Ding, H.; Friestad, G. K.
Heterocycles 2006, 70, 185-199. (f) Hydride additions: Qin, J.; Friestad,
G. K. Tetrahedron 2003, 59, 6393-6402.
(10) Reviews: (a) Friestad, G. K. Tetrahedron 2001, 57, 5461-5496.
(b) Bertrand, M.; Feray, L.; Gastaldi, S. C. R. Acad. Sci. Paris, Chim. 2002,
5, 623-638. (c) Miyabe, H.; Ueda, M.; Naito, T. Synlett 2004, 1140-
1157. For selected recent developments in intermolecular radical addition
to CdN bonds, see: (d) Yamada, K.; Yamamoto, Y.; Maekawa, M.;
Akindele, T.; Umeki, H.; Tomioka, K. Org. Lett. 2006, 8, 87-89. (e) Ueda,
M.; Miyabe, H.; Sugino, H.; Miyata, O.; Naito, T. Angew. Chem., Int. Ed.
2005, 44, 6190-6193. (f) McNabb, S. B.; Ueda, M.; Naito, T. Org. Lett.
2004, 6, 1911-1914. (g) Miyabe, H.; Yamaoka, Y.; Takemoto, Y. J. Org.
Chem. 2005, 70, 3324-3327. (h) Clerici, A.; Cannella, R.; Pastori, N.;
Panzeri, W.; Porta, O. Tetrahedron 2006, 62, 5986-5994. (i) Risberg, E.;
Fischer, A.; Somfai, P. Tetrahedron 2005, 61, 8443-8450. (j) Ferna´ndez,
M.; Alonso, R. Org. Lett. 2003, 5, 2461-2464.
Testing these hypotheses began with preparation of an
iodide encompassing the structural features of C. For this
purpose, the C2-symmetric diester 1 (ROH ) (-)-menthol)
was acquired using the known enantioselective Diels-Alder
reaction of dimenthyl fumarate13 (Scheme 2). Reductive
removal of the (-)-menthol and monosilylation of the
Scheme 2a
(11) (a) Friestad, G. K.; Qin, J. J. Am. Chem. Soc. 2001, 123, 9922-
9923. (b) Friestad, G. K.; Qin, J.; Suh, Y.; Marie´, J.-C. J. Org. Chem. 2006,
71, 7016-7027. (c) Friestad, G. K.; Deveau, A. M.; Marie´, J.-C. Org. Lett.
2004, 6, 3249-3252.
(12) (a) Review: Murphy, J. A. In Radicals in Organic Synthesis;
Renaud, P., Sibi, M. P., Eds.; Wiley-VCH: Weinheim, 2001; Vol 1, pp
298-316. For leading references, see: (b) Callaghan, O.; Lampard, C.;
Kennedy, A. R.; Murphy, J. A. J. Chem. Soc., Perkin Trans. 1 1999, 995-
1001. (c) Jahn, U.; Muller, M.; Aussieker, S. J. Am. Chem. Soc. 2000, 122,
5212-5213. (d) Rivkin, A.; Nagashima, T.; Curran, D. P. Org. Lett. 2003,
5, 419-422. (e) Denes, F.; Chemla, F.; Normant, J. F. Angew. Chem., Int.
Ed. 2003, 42, 4043-4046. (f) Tojino, M.; Uenoyama, Y.; Fukuyama, T.;
Ryu, I. Chem. Commun. 2004, 2482-2483. (g) Bazin, S.; Feray, L.;
Vanthuyne, N.; Bertrand, M. P. Tetrahedron 2005, 61, 4261-4274. (h)
Ueda, M.; Miyabe, H.; Sugino, H.; Miyata, O.; Naito, T. Angew. Chem.,
Int. Ed. 2005, 44, 6190-6193.
a ROH ) (-)-menthol; the antipodes employed (+)-menthol.
4244
Org. Lett., Vol. 9, No. 21, 2007