Angewandte
Chemie
Keywords: asymmetric catalysis · balanol ·
.
homogeneous catalysis · palladium · vinyl aziridines
[1] a) B. M. Trost, Acc. Chem. Res. 1996, 29, 355 – 364;
b) B. M. Trost, M. L. Crawley, Chem. Rev. 2003, 103,
2921 – 2944; c) B. M. Trost, J. Org. Chem. 2004, 69,
5813 – 5837.
[2] a) B. M. Trost, E. J. McEachern, F. D. Toste, J. Am.
Chem. Soc. 1998, 120, 12702 – 12703; b) B. M. Trost,
T. L. Calkins, C. Oertelt, J. Zambrano, Tetrahedron Lett.
1998, 39, 1713 – 1716L; c) B. M. Trost, C. Jiang, J. Am.
Chem. Soc. 2001, 123, 12907 – 12908.
[3] a) B. M. Trost, D. R. Fandrick, J. Am. Chem. Soc. 2003,
125, 11836 – 11837; b) C. Dong, H. Alper, Tetrahedron:
Asymmetry 2004, 15, 1537 – 1540; c) B. M. Trost, D. R.
Fandrick, Org. Lett. 2005, 7, 823 – 826.
[4] D. Lucet, T. Le Gall, C. Mioskowski, Angew. Chem.
1998, 110, 2724 – 2772; Angew. Chem. Int. Ed. 1998, 37,
2580 – 2627.
[5] a) B. M. Trost, Science 1991, 254, 1471 – 1477; b) B. M.
Trost, Acc. Chem. Res. 2002, 35, 695 – 705.
[6] B. M. Trost, R. C. Bunt, R. C. Lemoine, T. L. Calkins, J.
Am. Chem. Soc. 2000, 122, 5968 – 5976.
[7] a) Y. Ohfune, N. Kurokawa, Tetrahedron Lett. 1984, 25,
1071 – 1074; b) D. B. Berkowitz, G. Maiti, Org. Lett.
2004, 6, 2661 – 2664.
Scheme 2. Formal synthesis of balanol and epi-C4-balanol. a) 5 mol% Grubbs II
catalyst, CH2Cl2, 358C (90%), b) BH3·THF, then NaBO3·H2O, 08C (47%), c) H2,
Pd(OH)2, MeOH, then HCl (83%), d) (Boc)2O, DMAP, CH3CN, e) NIS, DCE, hn
(79%, 2 steps), f) lauroyl peroxide, cyclohexane, hn (99%), g) HCl, H2O, reflux
(99%). DMAP=4-dimethylaminopyridine, NIS=N-iodosuccinimide, DCE=di-
chloroethane.
[8] The lower yields of the desired products reported in
Table 2 compared to those in Table 1 may result from
the formation of a small amount of a by-product that may be the
cyclic urea derived from loss of the alkoxy group in the
tetrahedral intermediate of the isomerization step.
[9] a) P. Kulanthaivel, Y. F. Hallock, C. Boros, S. M. Hamilton, W. P.
Janzen, L. M. Ballas, C. R. Loomis, J. B. Jiang, J. Katz, R.
Steiner, J. Clardy, J. Am. Chem. Soc. 1993, 115, 6452 – 6453; b) S.
Ohshima, M. Yanagisawa, A. Katoh, T. Fujii, T. Sano, S.
Matsukuma, T. Furumai, M. Fujiu, K. Watanabe, K. Yohose,
M. Arisawa, T. Okude, J. Antibiot. 1994, 47, 639 – 647.
[10] A. Deiters, S. F. Martin, Chem. Rev. 2004, 104, 2199 – 2238.
[11] For recent efforts towards the synthesis of balanol see: a) G. R.
Cook, P. S. Shanker, S. L. Peterson, Org. Lett. 1999, 1, 615 – 618;
b) A. Furstner, O. R. Thiel, J. Org. Chem. 2000, 65, 1738 – 1742;
c) D. Riber, R. Hazell, T. Skrydstrup, J. Org. Chem. 2000, 65,
5382 – 5390; d) C. E. Masse, A. J. Morgan, J. S. Panek, Org. Lett.
2000, 2, 2571 – 2573; e) J. P. Genet, P. Phansavath, S. D. Paule, V.
Ratovelomanana-Vidal, Eur. J. Org. Chem. 2000, 3903 – 3907;
f) J. S. Yadav, C. Srinivas, Tetrahedron Lett. 2002, 43, 3837 – 3839;
g) J. S. Yadav, C. Srinivas, Tetrahedron 2003, 59, 10325 – 10329;
h) S. Raghavan, C. N. Kumar, Tetrahedron Lett. 2006, 47, 1585 –
1588, and references therein.
allow this isomer to be converted into the natural diastereo-
mer as well.
In conclusion, we have developed an efficient method for
the preparation of chiral vicinal diamines and amino alcohols
through a dynamic kinetic asymmetric allylic amination and
acyl migration of vinyl aziridines and epoxides with imido
carboxylates. The discovery of the facile acyl migration
greatly expands the product scope and utility in natural
product synthesis. Accordingly, the methodology provided a
platform for the formal synthesis of balanol and analogues.
Experimental Section
Typical conditions for the dynamic kinetic asymmetric allylic
amination of vinyl aziridines and epoxides with imido carboxylates:
The catalyst solution was prepared by stirring under argon a mixture
of [{(h3-C3H5)PdCl}2] (2 mol% based on electrophile) and ligand
(S,S)-3 (6 mol% based on electrophile) in anhydrous and degassed
dichloromethane (0.15m based on electrophile) for 15 min at ambient
temperature. The aziridine or epoxide was added to the catalyst
solution by syringe, and the solution was transferred by cannula into
an argon-purged vessel containing the nucleophile (1.05 equiv based
on electrophile). The reaction mixture was stirred at 358C for 18 h, at
which point the electrophile has been consumed by TLC. Concen-
tration of the reaction mixture in vacuo gave an oil, and purification
by silica gel chromatography (ether/hexanes) provided the desired
product.
[12] a) H. C. Brown, K. A. Keblys, J. Am. Chem. Soc. 1964, 86, 1795 –
1801; b) D. A. Evans, G. C. Fu, A. H. Hoveyda, J. Am. Chem.
Soc. 1988, 110, 6917 – 6918.
[13] J. W. Lampe, P. F. Hughes, C. K. Biggers, S. H. Smith, H. Hu, J.
Org. Chem. 1996, 61, 4572 – 4581.
[14] H. Hu, S. Hollinshead, S. E. Hall, K. Kalter, L. M. Ballas,
Bioorg. Med. Chem. Lett. 1996, 6, 973 – 978.
[15] J. Boivin, B. Quiclet-Sire, L. Ramos, S. Z. Zard, Chem. Commun.
1997, 353 – 354.
Received: February 24, 2007
Published online: July 10, 2007
Angew. Chem. Int. Ed. 2007, 46, 6123 –6125
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
6125