to become more selective and less toxic potential therapeutic
agents3 for cancer and deadly viral diseases. Recent years have
therefore seen a surge in interest in the synthesis of unnatural
nucleoside analogues having conformational restrictions in the
pentofuranose moiety.4,5
Synthesis of Oxepane Ring Containing
Monocyclic, Conformationally Restricted Bicyclic
and Spirocyclic Nucleosides from D-Glucose: A
Cycloaddition Approach
To impart some degree of conformational restriction to the
natural nucleosides, several possibilities have been suggested.
These include (i) synthesis of locked bicyclic nucleoside
analogues by inserting an extra ring fused to the furanose moiety,
(ii) synthesis of spironucleosides,6-10 and (iii) synthesis of
nucleosides of varied ring structures.11 Some examples of
conformationally constrained synthetic bicyclic and spirocyclic
nucleosides are shown in structures 1-9. We have therefore
Subhankar Tripathi,†,§ Biswajit G. Roy,†,§
Michael G. B. Drew,‡ Basudeb Achari,† and
Sukhendu B. Mandal*,†
Department of Chemistry, Indian Institute of Chemical Biology,
4, Raja S. C. Mullick Road, JadaVpur, Kolkata 700 032, India,
and Department of Chemistry, UniVersity of Reading,
Whiteknights, Reading RG6 6AD, United Kingdom
ReceiVed April 23, 2007
taken up a scheme to synthesize new classes of bicyclic
nucleosides and C-4′ spiroannulated nucleosides. The present
Note deals with the application of 1,3-dipolar nitrone cycload-
dition reactions (INC) toward this goal, which also delivered,
with suitable modification of the scheme, newer nucleosides
based on oxepanes.
An interesting and flexible strategy12 suitable for the con-
struction of oxepane-fused furano sugars involves an INC
reaction between C-5 nitrone and C-3 olefin (C-3-O-allyl) of
D-glucose derived substrates (Scheme 1, Path I). We rationalized
that cyclization involving a C-4 vinyl and a C-3 tethered nitrone
Carbohydrate-derived substrates having (i) C-5 nitrone and
C-3-O-allyl, (ii) C-4 vinyl and a C-3-O-tethered nitrone, and
(iii) C-5 nitrone and C-4-allyloxymethyl generated tetracyclic
isoxazolidinooxepane/-pyran ring systems upon intramolecu-
lar nitrone cycloaddition reactions. Deprotection of the 1,2-
acetonides of these derivatives followed by introduction of
uracil base via Vorbru¨ggen reaction condition and cleavage
of the isooxazolidine rings as well as of benzyl groups by
transfer hydrogenolysis yielded an oxepane ring containing
bicyclic and spirocyclic nucleosides. The corresponding
oxepane based nucleoside analogues were prepared by
cleavage of isoxazolidine and furanose rings, coupling of
the generated amino functionalities with 5-amino-4,6-dichlo-
ropyrimidine, cyclization to purine rings, and finally ami-
nolysis.
(3) (a) Shin, K. J.; Moon, H. R.; Georgen, C.; Marquez, V. E. J. Org.
Chem. 2000, 65, 2172-2178. (b) Russ, P.; Schelling, P.; Scapozza, L.;
Folkers, G.; De Clercq, E.; Marquez, V. E. J. Med. Chem. 2003, 46, 5045-
5054.
(4) (a) Koshkin, A. A.; Nielsen, P.; Meldgaard, M.; Rajwanshi, V. K.;
Singh, S. K.; Wengel, J. J. Am. Chem. Soc. 1998, 120, 13252-13253. (b)
Rajwanshi, V. K.; Håkansson, A. E.; Sørensen, M. D.; Pitsch, S.; Singh, S.
K.; Kumar, R.; Nielsen, P.; Wengel, J. Angew. Chem., Int. Ed. 2000, 39,
1656-1659. (c) Kværnø, L.; Wrightman, R. H.; Wengel, J. J. Org. Chem.
2001, 66, 5106-5112.
(5) (a) Hildbrand, S.; Leumann, C. Angew. Chem., Int. Ed. Engl. 1996,
35, 1968-1970. (b) Steffens, R.; Leumann, C. J. Am. Chem. Soc. 1999,
121, 3249-3255.
(6) Kittaka, A.; Asakura, T.; Kuze, T.; Tanaka, H.; Yamada, N.;
Nakamura, K. T.; Miyasaka, T. J. Org. Chem. 1999, 64, 7081-7093 and
references cited therein.
(7) Ravindra Babu, B.; Keinicke, L.; Petersen, M.; Nielsen, C.; Wengel,
J. Org. Biomol. Chem. 2003, 1, 3514-3526.
The natural nucleosides experience rapid flipping between
the two preferential conformations of the ribose ring,1,2 viz. the
C-3′-endo (N-type) and the C-2′-endo (S-type), due to the low-
energy barriers. If this conformational flipping is stopped or
restricted to some extent, the nucleoside analogues are expected
(8) Nielsen, P.; Larsen, K.; Wengel, J. Acta Chem. Scand. 1996, 50,
1030-1035.
(9) (a) Dong, S.; Paquette, L. A. J. Org. Chem. 2005, 70, 1580-1596.
(b) Hortung, R.; Paquette, L. A. J. Org. Chem. 2005, 70, 1597-1604. (c)
Paquette, L. A.; Dong, S. J. Org. Chem. 2005, 70, 5655-5664. (d) Paquette,
L. A. Aust. J. Chem. 2004, 57, 7-17 and references cited therein.
(10) (a) Roy, A.; Achari, B.; Mandal, S. B. Tetrahedron Lett. 2006, 47,
3875-3879. (b) Sahabuddin, Sk.; Roy, A.; Drew, M, G. B.; Roy, B. G.;
Achari, B.; Mandal, S. B. J. Org. Chem. 2006, 71, 5980-5992.
(11) Mandal, S. B.; Sahabuddin, Sk.; Singha, K.; Roy, A.; Roy, B. G.;
Maity, J. K.; Achari, B. Proc. Indian Natl. Sci. Acad., Part A 2005, 71,
283-307.
* Address correspondence to this author. Fax: +91 (33) 24735197.
† Indian Institute of Chemical Biology.
§ These authors contributed equally to this paper.
‡ University of Reading.
(1) Saenger, W. Principles of Nucleic Acid Structures; Springer: New
York, 1984; pp 51-104
(2) Altona, C.; Sunderalingam, M. J. Am. Chem. Soc. 1972, 94, 8205-
8212.
(12) Bhattacharjee, A.; Dutta, S.; Chattopadhyay, P.; Ghoshal, N.; Kundu,
A. P.; Pal, A.; Mukhopadhyay, R.; Chowdhury, S.; Bhattacharjya, A.; Patra,
A. Tetrahedron 2003, 59, 4623-4639.
10.1021/jo070846m CCC: $37.00 © 2007 American Chemical Society
Published on Web 08/23/2007
J. Org. Chem. 2007, 72, 7427-7430
7427