3742
S.G. Bott et al. / Polyhedron 26 (2007) 3737–3742
(d) C.S.-W. Lau, W.-T. Wong, J. Chem. Soc., Dalton Trans. (1999)
2511;
(e) R.D. Adams, L. Chen, M. Huang, Organometallics 13 (1994)
2696.
keeping with its single-bond designation and consistent
with those Co–Co bond lengths found in other dinuclear
cobalt compounds [17]. The cobalt-bound alkene moieties
defined by the atoms C(11)–C(15) and C(16)–C(17) exhibit
[2] (a) K. Yang, S.G. Bott, M.G. Richmond, Organometallics 13 (1994)
3767;
˚
bond distances of 1.39(3) and 1.40(3) A, respectively, that
(b) K. Yang, S.G. Bott, M.G. Richmond, J. Organomet. Chem. 516
(1996) 65.
are slightly shorter than those distances found in 2. The
remaining bond distances and angles are unexceptional
and require no comment.
[3] (a) For examples involving intermolecular phosphine attack on a
coordinated alkyne ligand, see D.M. Hoffman, J.C. Huffman, D.
Lappas, D.A. Wierda, Organometallics 12 (1993) 4312;
(b) J. Takats, J. Washington, B.D. Santarsiero, Organometallics 13
(1994) 1078;
4. Conclusions
(c) T. Mao, Z. Zhang, J. Washington, J. Takats, R.B. Jordan,
Organometallics 18 (1999) 2331.
[4] K. Yang, S.G. Bott, M.G. Richmond, Organometallics 13 (1994)
3788.
[5] For related substitution studies from our labs, see K. Yang, S.G.
Bott, M.G. Richmond, Organometallics 14 (1995) 919, 2718.
[6] H. Greenfield, H.W. Sternberg, R.A. Friedel, J.H. Wotiz, R. Markby,
I. Wender, J. Am. Chem. Soc. 78 (1956) 120.
[7] F. Mao, C.E. Philbin, T.J.R. Weakley, D.R. Tyler, Organometallics 9
(1990) 1510.
[8] M.L. Luetkens Jr., A.P. Sattelberger, H.H. Murray, J.D. Basil, J.P.
Fackler Jr., Inorg. Synth. 26 (1989) 7.
[9] D.F. Shriver, The Manipulation of Air-Sensitive Compounds,
McGraw-Hill, New York, 1969.
[10] N.B. Coltrup, L.H. Daly, S.E. Wiberley, Introduction to Infrared and
Raman Spectroscopy, Academic Press, New York, 1990.
[11] C.P. Horwitz, D.F. Shriver, Adv. Organomet. Chem. 23 (1984) 219.
[12] All NMR spectrum were recorded at low temperature in order to
minimize undesirable 59Co broadening of the 13C and 31P resonances.
No noticeable fluxional behavior was observed for the CO and
phosphine ligands in 2 and 3. See M. Schwartz, M.G. Richmond,
A.F.T. Chen, G.E. Martin, J.K. Kochi, Inorg. Chem. 27 (1988) 4698.
[13] (a) For reports of spontaneous resolution of racemic mixtures, see R.
The addition of PMe3 to Co2(CO)4[l-PhC@ C(H)PPh2
C@C(PPh2)C(O)OC(O)] (1) promotes the regiospecific
CO insertion into one of the Co-C(hydrocarbyl) bonds
and production of the acyl compound Co2(CO)3-
(PMe3)[l-PhC(CO)@C(H)PPh2C@C(PPh2)C(O)OC(O)] (2).
This represents the first example of a phosphine-induced
CO-insertion reaction in a zwitterionic hydrocarbyl com-
pound of this genre. Compound 2 is thermally unstable
and undergoes decarbonylation to furnish the PMe3-substi-
tuted compound Co2(CO)3(PMe3)[l-PhC@C(H)PPh2C@
C(PPh2)C(O)OC(O)] (3) and 1, as the major and minor
products, respectively. Our future endeavors will explore
the generality of this reaction with isonitrile ligands and
different phosphines, and the kinetics for the CO insertion
reaction will be investigated using low-temperature spec-
troscopic techniques.
Acknowledgement
´
Clerac, F.A. Cotton, K.R. Dunbar, T. Lu, C.A. Murillo, X. Wang,
Financial support from the Robert A. Welch Founda-
tion (Grant B-1093-M.G.R) is much appreciated.
Inorg. Chem. 39 (2000) 3065;
(b) A. Johansson, M. Hakansson, S. Jagner, Chem. Eur. J. 11 (2005)
˚
5311;
Appendix A. Supplementary material
(c) H. Okazaki, Y. Kushi, H. Yoneda, J. Am. Chem. Soc. 107 (1985)
4183.
[14] A.G. Orpen, L. Brammer, F.H. Allen, O. Kennard, D.G. Watson,
R.J. Taylor, Chem. Soc., Dalton Trans. (1989) S1.
[15] (a) A.J.M. Caffyn, M.J. Mays, G.A. Solan, D. Braga, P. Sabatino, G.
Conole, M. McPartlin, H.R. Powell, J. Chem. Soc., Dalton Trans.
(1991) 3103;
CCDC 627411 and 627412 contain the supplementary
crystallographic data for 2 and 3. These data can be obtained
ing.html, or from the Cambridge Crystallographic Data
Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax:
(+44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk.
Supplementary data associated with this article can be
(b) I. Moldes, J. Ros, M.R. Torres, A. Perales, R. Mathieu, J.
Organomet. Chem 464 (1994) 219;
(c) J.D. King, M.J. Mays, G.E. Pateman, G.A. Solan, G. Conole, M.
McPartlin, J. Chem. Soc., Dalton Trans. (2001) 202;
(d) E. Champeil, S.M. Draper, J. Chem. Soc., Dalton Trans. (2001)
1440.
[16] For a classical study demonstrating this phenomenon, see C.P. Casey,
D.M. Scheck, J. Am. Chem. Soc. 102 (1980) 2723.
[17] (a) T.J. Snaith, P.J. Low, R. Rousseau, H. Puschmann, J.A.K.
Howard, J. Chem. Soc., Dalton Trans. (2001) 292;
(b) M.J. Mays, P.R. Raithby, M.-A. Rennie, V. Sarveswaran, G.A.
Solan, Inorg. Chim. Acta 277 (1998) 186;
References
[1] (a) S.J. Trepanier, J.N.L. Dennett, B.T. Sterenberg, R. McDonald,
M. Cowie, J. Am. Chem. Soc. 126 (2004) 8046;
(b) J.R. Wigginton, A. Chokshi, T.W. Graham, R. McDonald, M.J.
Ferguson, M. Cowie, Organometallics 24 (2005) 6398;
(c) S. Yoshimitsu, S. Hikichi, M. Akita, Organometallics 21 (2002)
3762;
(c) F.A. Cotton, J.D. Jamerson, B.R. Stults, J. Am. Chem. Soc. 98
(1976) 1774;
(d) C.-G. Xia, S.G. Bott, G. Wu, M.G. Richmond, J. Chem.
Crystallogr. 34 (2004) 513.