Enantioselective Cyclopropanation
COMMUNICATIONS
1.05 equivs.). The solution was stirred 30 min at room tem-
perature and when the reaction was complete by TLC,
AcOH (0.5 mL) was added, followed by H2O (50 mL). The
organic layer was then washed two times with a 0.3M HCl
solution, saturated aqueous NaCl solution, and dried
(MgSO4), filtered and concentrated. The resulting white
solid 4a was dried under vacuum, and can be used directly
in asymmetric cyclopropanation; yield: 4.56 g (99%); mp
154–1568C;. This compound was kept several months at
À208C without degradations. 1H NMR (400 MHz, CDCl3):
d=7.65–7.60 (m, 4H, H-Ph), 7.50–7.40 (m, 4H, H-Ph), 7.37–
7.22 (m, 12H, H-Ph), 5.32 (s, 2H, -CH-CPh2-), 0.74 (s, 6H,
2CH3); 13C NMR (100 MHz, CDCl3): d=143.5, 139.6 (d,
Moisan, Angew. Chem. 2004, 116, 5248–5286; Angew.
Chem. Int. Ed. 2004, 43, 5138–5175.
[2] a) T. Akiyama, J. Itoh, K. Yokota, K. Fuchibe, Angew.
Chem. 2004, 116, 1592–1594; Angew. Chem. Int. Ed.
2004, 43, 1566–1568; b) T. Akiyama, H. Morita, J. Itoh,
K. Fuchibe, Org. Lett. 2005, 7, 2583–2585; c) T. Akiya-
ma, Y. Tamura, J. Itoh, H. Morita, K. Fuchibe, Synlett
2006, 141–143; d) D. Uraguchi, M. Terada, J. Am.
Chem. Soc. 2004, 126, 5356–5357; e) D. Uraguchi, K.
Sorimachi, M. Terada, J. Am. Chem. Soc. 2004, 126,
11804–11805; f) D. Uraguchi, K. Sorimachi, M. Terada,
J. Am. Chem. Soc. 2005, 127, 9360–9361; g) M. Terada,
K. Machioka, K. Sorimachi, Angew. Chem. 2006, 118,
2312–2315; Angew. Chem. Int. Ed. 2006, 45, 2254–
2257; h) M. Rueping, E. Sugiono, C. Azap, T. Theiss-
mann, M. Bolte, Org. Lett. 2005, 7, 3781–3783; i) M.
Rueping, E. Sugiono, C. Azap, Angew. Chem. 2006,
118, 2679–2681; Angew. Chem. Int. Ed. 2006, 45, 2617–
2619; j) M. Rueping, A. P. Antonchick, T. Theissmann,
Angew. Chem. 2006, 118, 3765–3768; Angew. Chem.
Int. Ed. 2006, 45, 3683–3686; k) S. Hoffmann, A. M.
Seayad, B. List, Angew. Chem. 2005, 117, 7590–7593;
Angew. Chem. Int. Ed. 2005, 44, 7424–7427; l) J.
Seayad, A. M. Seayad, B. List, J. Am. Chem. Soc. 2006,
128, 1086–1087; m) S. Mayer, B. List, Angew. Chem.
2006, 118, 4299–4301; Angew. Chem. Int. Ed. 2006, 45,
4193–4195; n) R. I. Storer, D. E. Carrera, Y. Ni,
D. W. C. MacMillan, J. Am. Chem. Soc. 2006, 128, 84–
86.
J
P, C =8.7 Hz), 128.8, 128.2, 128.2, 127.7, 127.3, 127.0, 113.7,
87.9 (d,
J
P,C =5.2 Hz), 79.6, 26.7; 31P NMR (162 MHz,
CDCl3): d=À8.13; IR: nmax =3060, 2989, 2935, 1600, 1495,
1448, 1383, 1287, 1215, 1165, 1009, 997, 733, 695 cmÀ1; HR-
MS (ESI): m/z=551.1589, calcd. for C31H29O6NaP [M+
Na]+: 551.1593; [a]D20: À210.8 (c 2.64, CHCl3).
General Procedure for the Cyclopropanation using
Chiral Phosphate Ligands Derived from TADDOL
4a–f
To a solution of the ligand (0.31mmol, 1.25 equivs.) in DCE
(1.5 mL) at À158C was added ZnEt2 (32 mL, 0.31mmol,
1.25 equivs.) dropwise. This solution was stirred for 15 min
after which CH2I2 (25 mL, 0.31mmol, 1.25 equivs.) was
added dropwise. This solution was stirred for an additional
20 min.A solution of substrate (0.25 mmol, 1.0 equiv.) in
DCE (1.0 mL) was added and the resulting solution was stir-
red for 48 h. The reaction was quenched with saturated
NH4Cl solution, washed with saturated aqueous NaCl, dried
(MgSO4), filtered and concentrated. It is noteworthy that
the chiral ligand could be readily recovered after the reac-
tion by simple precipitation with CH2Cl2/hexane and filtra-
tion. The crude product was purified by flash chromatogra-
phy to afford the pure desired cyclopropane derivative. All
the cyclopropanes synthesized have spectral and physical
data identical to the data reported in the literature.
[3] G. B. Rowland, H. Zhang, E. B. Rowland, S. Chenna-
madhavuni, Y. Wang, J. C. Antilla, J. Am. Chem. Soc.
2005, 127, 15696–15697.
[4] M. Terada, K. Sorimachi, D. Uraguchi, Synlett 2006,
133–136.
[5] M.-C. Lacasse, C. Poulard, A. B. Charette, J. Am.
Chem. Soc. 2005, 127, 12440–12441.
[6] During the preparation of this manuscript, Akiyama
et al. reported, without synthetic details, the use of sim-
ilar chiral phosphates in a Mannich-Type reaction: T.
Akiyama, Y. Saitoh, H. Morita, K. Fuchibe, Adv. Synth.
Catal. 2005, 347, 1523–1526.
[7] For a general review on TADDOL: D. Seebach, A. K.
Beck, A. Heckel, Angew. Chem. 2001, 113, 96–142;
Angew. Chem. Int. Ed. 2001, 40, 92–138.
Acknowledgements
[8] a) A. B. Charette, C. Brochu, J. Am. Chem. Soc. 1995,
117, 11367–11368; b) A. B. Charette, C. Molinaro, C.
Brochu, J. Am. Chem. Soc. 2001, 123, 12160–12167;
c) A. B. Charette, C. Molinaro, C. Brochu, J. Am.
Chem. Soc. 2001, 123, 12168–12175.
This work was supported by NSERC (Canada) and the Uni-
versitØ de MontrØal. We acknowledge Francine BØlanger-Gar-
iepy for X-ray technical support.
[9] a) A. K. Beck, B. Bastani, D. A. Plattner, W. Petter, D.
Seebach, H. Braunschweiger, P. Gysi, L. LaVeccia,
Chimia, 1991, 45, 238–244; b) D. Seebach, R. Dahin-
den, R. E. Marti, A. K. Beck, D. A. Plattner, F. N. M.
Kꢁhnle, J. Org. Chem. 1995, 60, 1788–1799.
[10] a) Review of phosphorus protection strategies for poly-
nucleotide synthesis: H. Kossel, H. Seliger, Fortschr.
Chem. Org. Naturst. 1975, 32, 297–508; b) phosphite
protected by a 2-cyanoethyl group: N. D. Sinha, J. Bier-
nat, H. Kçster, Tetrahedron Lett. 1983, 24, 5843–5846;
c) D. A. Evans, J. R. Gage, J. L. Leighton, J. Am.
Chem. Soc. 1992, 114, 9434–9453.
References
[1] For recent reviews, see: a) B. List , Tetrahedron 2002,
58, 5573–5590; b) B. List, Acc. Chem. Res. 2004, 37,
548–557; c) A. Berkessel, H. Grçger. Asymmetric Or-
ganocatalysis - From Biomimetic Concepts to Applica-
tions in Asymmetric Synthesis Wiley-VCH, Weinheim,
2005; d) W. Notz, F. Tanaka, C. F. Barbas, III, Acc.
Chem. Res. 2004, 37, 580–591; e) P. I. Dalko, L.
Moisan, Angew. Chem. 2001, 113, 3840–3864; Angew.
Chem. Int. Ed. 2001, 40, 3726–3748; f) P. I. Dalko, L.
Adv. Synth. Catal. 2006, 348, 2363 – 2370
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
2369