Figure 2. 1H NMR (300 MHz, CDCl3) spectrum of 39a/39b (2.8:1).
meric pairs of silylated ethers and an amine were prepared
and studied by 1H NMR. The derivatives of the R-aryl/alkyl-
and alkoxycarbonyl/alkyl-substituted alcohols/amines, com-
pounds 37a-41a/37b-41b, in particular showed highly
distinctive spectra, which allows for unambiguous identifica-
tion and quantification of the compounds (Table 2).
As an example, a typical 1H NMR spectrum of a mixture
of (S,S)- and (R,S)-39 (ratio 2.8:1) is shown in Figure 2.
Interestingly, the effect of the CDA on the NMR is
particularly pronounced at the signals of Si-bound groups
rather than those of the original chiral alcohols. Above all,
the signals of the two pairs of diastereotopic MeSi groups
are typically well separated (see Table 2), which is beneficial
since they are registered in an otherwise signal-free region
of the spectrum.
The NMR results also suggest a potential application of
the MOTES group as a CDA for the direct determination of
absolute configurations. Except for the derivatives of the
alkyl/alkyl-substituted alcohols, where the diastereomeric
silyl ethers are not sufficiently differentiated (entries 1 and
2, Table 2), the relative shifting of the several signals due
to the CDA is consistently related to the relative configura-
tions of the two chiral moieties contained in the molecules:
the chemical shift differences of the two MeSi signals of
the silylated (R*,R*)-derivatives (∆δa) are always smaller
than those of the two MeSi signals of the (R*,S*)-derivatives
(∆δb), and in all cases the MeSi signals of the (R*,R*)-
derivatives are enframed by those of the (R*,S*)-counterparts.
Whether this pattern proves reliable over a larger range of
compounds is presently under investigation.
In conclusion, the MOTES group was shown to act
efficiently as a protective and stereodirecting group as well
as a potential CDA to differentiate enantiomeric alcohols
and to determine their absolute configurations. Diastereo-
selectivities of up to 98.8% and 94.2% respectivel, were
obtained by 1,5- and 1,6-chiral inductions with MOTES-
derivatized hydroxyaldehydes, -ketones, and -enones, and a
synthetic application of the group was shown with the
enantiospecific two-step preparation of (-)-frontalin. We
believe that the MOTES group can be multifunctionally
applied to any substrate that is able to chelate in derivatized
form, and thus it can be used as a universal tool in
enantioselective synthesis.
(13) (a) Kinzer, G. W.; Fentiman, A. F.; Page, T. F.; Foltz, R. L.; Vite,
J. P.; Pitman, G. B. Nature 1969, 221, 447. (b) Wood, D. L.; Browne, L.
E.; Ewing, B.; Lindahl, K.; Bedard, W. D.; Tilden, P. E.; Mori, K.; Pitman,
G. B.; Hughes, P. R. Science 1976, 192, 896. (c) Huber, D. P. W.; Gries,
R.; Borden, J. H.; Pierce, H. D. J. Chem. Ecol. 1999, 25, 805. (d)
Greenwood, D. M.; Comeskey, D. M.; Hunt, M. B.; Rasmussen, L.;
Elizabeth, L. Nature 2005, 438, 1097.
(14) (a) Brule´, G. Ann. Technol. Agric. 173, 22, 45. (b) Yajima, I.; Yanai,
T.; Nakamura, M.; Sakakibara, H.; Hayashi, K. Agric. Biol. Chem. 1984,
48, 849. (c) Berger, R. G.; Dettweiler, G. R.; Drawert, F. Dtsch. Lebensm.-
Rundsch. 1988, 84, 344.
(15) For some more recent examples: (a) Nishimura, Y.; Mori, K. Eur.
J. Org. Chem. 1998, 2, 233. (b) Kouklovsky, C.; Dirat, O.; Berranger, T.;
Langlois, Y.; Tran-Huu-Dau, M. E.; Riche, C. J. Org. Chem. 1998, 63,
5123. (c) Bravo, P.; Frigerio, M.; Ono, T.; Panzeri, W.; Peseti, C.; Sekine,
A.; Viani, F. Eur. J. Org. Chem. 2000, 8, 1387. (d) Kanada, R. M.;
Taniguchi, T.; Ogasawara, K. Tetrahedron Lett. 2000, 41, 3631. (e) Yus,
M.; Ramo´n, D. J.; Prieto, O. Chem. Eur. J. 2003, 15, 2745.
(16) (a) Bu¨chi, G.; Wu¨est, H. J. Org. Chem. 1969, 34, 1122. (b) Ohwa,
M.; Eliel, E. L. Chem. Lett. 1987, 41.
Acknowledgment. We thank the Swiss National Science
Foundation for financial support and Ms. Lora Hristova,
Institute of Organic Chemistry, University of Zurich, for
preliminary experiments.
(17) (a) Dale, J. A.; Mosher, H. S. J. Am. Chem. Soc. 1972, 95, 512. (b)
Anderson, R. C.; Shapiro, M. J. J. Org. Chem. 1984, 49, 1304. (c) Doolittle,
R. E.; Health, R. R. J. Org. Chem. 1984, 49, 5041. (d) Kato, N. J. J. Am.
Chem. Soc. 1990, 112, 254. (e) Ohtani, I.; Kusumi, T.; Kashman, Y.;
Kakisawa, H. J. Am. Chem. Soc. 1991, 113, 4092. (f) Seco, J. M.; Quin˜oa´,
E.; Riguera, R. J. Chem. ReV. 2004, 104, 17. (g) Chan, T. H.; Peng, Q. J.;
Wang, D.; Guo, J. A. J. Chem. Soc., Chem. Commun. 1987, 325. (h)
Clausen, R. P.; Bols, M. J. Org. Chem. 1997, 62, 4457. (i) Schroeder, F.
C.; Weibel, B. D.; Meinwald, J. Org. Lett. 2004, 6, 3019.
Supporting Information Available: All experimental
procedures and spectroscopic data. This material is available
(18) (a) Weibel, D. B.; Walker, T. R.; Schroeder, F. C.; Meinwald, J.
Org. Lett. 2000, 2, 2381. (b) Schroeder, F. C.; Weibel, D. B.; Meinwald, J.
Org. Lett. 2004, 6, 3019.
OL071382H
3796
Org. Lett., Vol. 9, No. 19, 2007