10.1002/ejoc.201900326
European Journal of Organic Chemistry
COMMUNICATION
[3]
a) K. N. Van, L. C. Morrill, A. D. Smith, D. Romo in Lewis Base
Catalysis in Organic Synthesis, Vol. 2 (Eds.: E. Vedejs, S. E. Denmark),
Wiley-VCH, Weinheim, 2016, ch. 13, pp. 527–653; b) M. J. Gaunt, C. C.
C. Johansson, Chem. Rev., 2007, 107, 5596–5605.
Manabe, K. Fujioka, H. Yokoe, M. Kanematsu, M. Yoshida, K. Shishido,
Tetrahedron Lett., 2013, 54, 1012–1014.
[18] The enamide substrates were not stable for long periods, and were
therefore only quickly purified by silica column chromatography and
dried under high vacuum for 15 minutes. These enamides were then
applied in the subsequent reaction despite containing some minor
impurities and residual solvent. The yields of indoline-cyclobutanone
products reported are therefore most likely underestimated.
[4]
[5]
[6]
G. S. Cortez, R. L. Tennyson, D. Romo, J. Am. Chem. Soc., 2001, 123,
7945–7946.
T. Mukaiyama, U. Masahiro, S. Eiichiro, S. Kazuhiko, Chem. Lett., 1975,
4, 1045–1048.
a) W. T. Brady, Y.-S. F. Giang, A. P. Marchand, A.-H. Wu, J. Org.
Chem., 1987, 52, 3457–3461; b) R. L. Funk, M. M. Abelman, K. M.
Jellison, Synlett, 1989, 36–37.
[19] Crystallographic data for 24 (CCDC 1898469) 29 (CCDC 1898470) and
30 (CCDC 1898471) is available free of charge from The Cambridge
[20] The relative configurations of the remaining products were assigned by
analogy.
[7]
a) S. H. Oh, G. S. Cortez, D. Romo, J. Org. Chem., 2005, 70, 2835–
2838; b) V. C. Purohit, A. S. Matla, D. Romo, J. Am. Chem. Soc., 2008,
130, 10478–10479; c) C. A. Leverett, V. C. Purohit, D. Romo, Angew.
Chem. Int. Ed., 2010, 49, 9479–9483; Angew. Chem., 2010, 122,
9669–9673; d) K. A. Morris, K. M. Arendt, S. H. Oh, D. Romo, Org. Lett.,
2010, 12, 3764–3767; e) G. Liu, M. E. Shirley, D. Romo, J. Org. Chem.,
2012, 77, 2496–2500.
[21] See references 6, 17d,h–j and: a) B. B. Snider, Chem. Rev., 1988, 88,
793–811; b) B. B. Snider, R. A. H. F. Hui, Y. S. Kulkarni, J. Am. Chem.
Soc., 1985, 107, 2194–2196; c) Y. S. Kulkarni, B. W. Burbaum, B. B.
Snider, Tetrahedron Lett., 1985, 26, 5619–5622; d) I. Markó, B.
Ronsmans, A.-M. Hesbain-Frisque, S. Dumas, L. Ghosez, J. Am. Chem.
Soc., 1985, 107, 2192–2194; e) E. J. Corey, M. C. Desai, T. A. Engler,
J. Am. Chem. Soc., 1985, 107, 4339–4341; f) M. Lachia, P. M. J. Jung,
A. De Mesmaeker, Tetrahedron Lett., 2012, 53, 4514–4517.
[8]
a) H. Henry-Riyad, C. Lee, V. C. Purohit, D. Romo, Org. Lett., 2006, 8,
4363–4366; b) G. Ma, H. Nguyen, D. Romo, Org. Lett., 2007, 9, 2143–
2146; c) W. Zhang, A. S. Matla, D. Romo, Org. Lett., 2007, 9, 2111–
2114; d) H. Nguyen, G. Ma, D. Romo, Chem. Commun., 2010, 46,
4803–4805; e) G. Liu, D. Romo, Angew. Chem. Int. Ed., 2011, 50,
7537–7540; Angew. Chem., 2011, 123, 7679–7682; f) Y. Feng, M. M.
Majireck, S. M. Weinreb, Angew. Chem. Int. Ed., 2012, 51, 12846–
12849; Angew. Chem., 2012, 124, 13018–13021; g) C. A. Leverett, V.
C. Purohit, A. G. Johnson, R. L. Davis, D. J. Tantillo, D. Romo, J. Am.
Chem. Soc., 2012, 134, 13348–13356.
[22] For reports that propose ketene generation from mixed anhydrides in
the presence of base, see: a) J. J. Beereboom, J. Org. Chem., 1965, 30,
4230–4234; b) A. Corbella, P. Gariboldi, M. Gil-Quintero, G. Jommi, J.
St. Pyrek, Experientia¸ 1977, 33, 703–704; c) W. T. Brady, A. P.
Marchand, Y.-S. F. Giang, A.-H. Wu, Synthesis, 1987, 395–396; d) W.
T. Brady, Y.-Q. Gu, J. Heterocyclic Chem., 1988, 25, 969–971; e) T.
Saito, T. Suzuki, M. Morimoto, C. Akiyama, T. Ochiai, K. Takeuchi, T.
Matsumoto, K. Suzuki, J. Am. Chem. Soc., 1998, 120, 11633–11644; f)
S. Serra, C. Fuganti, A. Moro, J. Org. Chem., 2001, 66, 7883–7888.
[23] For discussion on the potential of ketene generation from carboxylic
acid-derived substrates in C(1)-ammonium enolate catalysis see
references 3a, 4, 7d, 8a,b and: T. H. West, D. M. Walden, J. E. Taylor,
A. C. Brueckner, R. C. Johnston, P. H.-Y. Cheong, G. C. Lloyd-Jones,
A. D. Smith, J. Am. Chem. Soc., 2017, 139, 4366–4375.
[9]
a) D. Sikriwal, D. K. Dikshit, Tetrahedron, 2011, 67, 210–215; b) W.
Kong, D. Romo, J. Org. Chem., 2017, 82, 13161–13170.
[10] a) D. Belmessieri, L. C. Morrill, C. Simal, A. M. Z. Slawin, A. D. Smith, J.
Am. Chem. Soc., 2011, 133, 2714–2720; b) D. Belmessieri, A. de la
Houpliere, E. D. D. Calder, J. E. Taylor, A. D. Smith, Chem. – Eur. J.,
2014, 20, 9762–9769; c) R. M. Neyyappadath, D. B. Cordes, A. M. Z.
Slawin, A. D. Smith, Chem. Commun., 2017, 53, 2555–2558.
[11] a) D. Belmessieri, D. B. Cordes, A. M. Z. Slawin, A. D. Smith, Org. Lett.,
2013, 15, 3472–3475; b) D. G. Stark, P. Williamson, E. R. Gayner, S. F.
Musolino, R. W. F. Kerr, J. E. Taylor, A. M. Z. Slawin, T. J. C.
O’Riordan, S. A. Macgregor, A. D. Smith, Org. Biomol. Chem., 2016, 14,
8957–8965.
[24] a) P. Otto, L. A. Feiler, R. Huisgen, Angew. Chem. Int. Ed., 1968, 7,
737–738; b) R. Huisgen, P. Otto, J. Am. Chem. Soc., 1968, 91, 5922–
5923; c) K. Takaoka, T. Aoyama, T. Shioiri, Synlett, 1994, 1005–1006;
d) A. R. de Faria, E. L. Salvador, C. R. D. Correia, J. Org. Chem., 2002,
67, 3651–3661; e) A. C. B. Montes de Oca, C. R. D. Correia, ARKIVOC,
2003, 390–403.
[12] V. Sridharan, P. A. Suryavanshi, J. C. Menéndez, Chem. Rev., 2011,
111, 7157–7259.
[25] M. A. Waly, Acta Chim. Slov., 2008, 55, 343–349.
[13] See Supporting Information for more details.
[26] For discussion on the formation of ketenes from acyl ammonium
intermediates see reference 22e and: a) A. C. Spivey, S. Arseniyadis,
Angew. Chem. Int. Ed., 2004, 43, 5436–5441; Angew. Chem. Int. Ed.,
2004, 116, 5552–5557; b) A. K. Sheinkman, S. I. Suminov, A. N. Kost,
Russ. Chem. Rev., 1973, 42, 642–661; c) A. C. Spivey, A. Maddaford,
D. P. Leese, A. J. Redgrave, J. Chem. Soc. Perkin Trans. 1, 2001,
1785–1794; d) M. E. Abbasov, B. M. Hudson, D. J. Tantillo, D. Romo,
Chem. Sci., 2017, 8, 1511–1524.
[14] The ratio of (E)- and (Z)-enamides obtained varied upon repeated
synthesis and isolation (generally in range of 80:20 → 95:5, E:Z).
[15] Crystallographic data for 22 (CCDC 1898468) is available free of
charge from The Cambridge Crystallographic Data Centre via
[16] a) D. Zhang, H. Song, Y. Qin, Acc. Chem. Res., 2011, 44, 447–457; b)
D. Liu, G. Zhao, L. Xiang, Eur. J. Org. Chem., 2010, 3975–3984; c) W.
Zi, Z. Zuo, D. Ma, Acc. Chem. Res., 2015, 48, 702–711; d) M. S.
Kirillova, F. M. Miloserdov, A. M. Echavarren, Org. Chem. Front., 2018,
5, 273–287.
[27] a) J. E. Baldwin, J. Chem. Soc. Chem. Commun., 1976, 734–736; b) J.
E. Baldwin, L. I. Kruse, J. Chem. Soc. Chem. Commun., 1977, 233–
235; c) J. E. Baldwin, M. J. Lusch, Tetrahedron, 1982, 38, 2939–2947;
d) K. Gilmore, R. K. Mohamed, I. V. Alabugin, WIREs Comput. Mol. Sci.,
2016, 6, 487–514.
[17] a) D. Julian, R. Foster, J. Chem. Soc. Chem. Commun., 1973, 311–
312; b) M. Ikeda, T. Uno, K.-I. Homma, K. Ohno, Y. Tamura, Synth.
Commun., 1980, 10, 437–449; c) M. Ikeda, K. Ohno, S. Mohri, M.
Takashi, Y. Tamura, J. Chem. Soc., Perkin Trans. 1, 1984, 405–412; d)
K. Shishido, T. Azuma, M. Shibuya, Tetrahedron Lett., 1990, 31, 219–
220; e) D. J. Hastings, A. C. Weedon, Can. J. Chem., 1991, 69, 1171–
1181; f) D. L. Oldroyd, A. C. Weedon, J. Org. Chem., 1994, 59, 1333–
1343; g) M. I. Attia, D. Güclü, B. Hertlein, J. Julius, P. A. Witt-Enderby,
D. P. Zlotos, Org. Biomol. Chem., 2007, 5, 2129–2137; h) T. Ozawa, M.
Kanematsu, H. Yokoe, M. Yoshida, K. Shishido, J. Org. Chem., 2012,
77, 9240–9249; i) T. Araki, T. Owawa, H. Yokoe, M. Kanematsu, M.
Yoshida, K. Shishido, Org. Lett., 2013, 15, 200–203; j) T. Araki, Y.
[28] Excluding examples of electrocyclic reactions, see reference 24 and: a)
B. M. Trost, T. A. Runge, J. Am. Chem. Soc., 1981, 103, 2485–2487; b)
B. M. Trost, T. A. Runge, J. Am. Chem. Soc., 1981, 103, 7559–7572; c)
N. A. Petasis, S.-P. Lu, J. Am. Chem. Soc., 1995, 117, 6394–6395; d)
S. J. Meek, F. Pradaux, D. R. Carbery, E. H. Demont, J. P. A. Harrity, J.
Org. Chem., 2005, 70, 10046–10056.
[29] For prior syntheses of 36 see reference 21f and: J. L. Scotson, B. I.
Andrews, A. P. Laws, M. I. Page, Org. Biomol. Chem., 2016, 14, 8301–
8308.
[30] The research data supporting this publication can be accessed at
This article is protected by copyright. All rights reserved.