P. Nova´k et al. / Journal of Organometallic Chemistry 692 (2007) 4287–4296
4295
NCH2), 2.74–2.65 (m, 12H, NCH3), 2.34–2.17 (m, 12H,
NCH3).19F{1H} NMR (CDCl3, 300 K, ppm): ꢀ138.6 (s),
1J(19F, 119Sn) = 2734 Hz, ꢀ145 (bs), ꢀ152 (bs), ꢀ155 (s),
ꢀ160 (bs). 119Sn{1H} NMR (CDCl3, 300 K, ppm):
ꢀ488.3 (dt), 1J(119Sn, 19F) = 2792 and 2577 Hz, ꢀ601.3
NCH3). 19F{1H} NMR (CDCl3, 300 K, ppm): ꢀ141 (bs),
ꢀ146.8 (bs), ꢀ161.7 (s). 119Sn{1H} NMR: (CDCl3,
300 K, ppm): ꢀ601.2 (ddt), 1J(119Sn, 19F) ꢁ 2520 Hz.
ESI-MS: MW = 388; m/z (%). Positive ion mode:
[M+K]+, 427 (49), [M+KꢀHF]+, 407 (75), [M-F]+, 369
(93), [MꢀFꢀHF]+, 349 (100), [MꢀFꢀ2*HFꢀCH2@
N(CH3)2], 271 (32), [LNCN+H]+, 193 (90). Negative ion
mode: [LNCNSnF4]ꢀ, 387 (100).
1
(ddt), J(119Sn, 19F) ꢁ 2430 Hz.
Method B. To a toluene solution of 4 (0.145 g,
0.31 mmol) was added LCNnBu2SnF (0.104 g, 0.63 mmol)
and the reaction mixture was stirred and heated at 80 °C
for 5 days. Afterwards, toluene was removed by filtration
and the remaining insoluble solid was washed several times
with toluene. The toluene extract was evaporated to dry-
ness in vacuo and a residuum was identified by NMR spec-
troscopy as the chloride analogue of LCNnBu2SnF. The
solid was investigated by ESI/MS: MW = 1161; m/z (%):
Positive ion mode: [(LNCNSnF4)3 + K]+, 1200 (10);
[(LNCNSnF4)3 + Na]+, 1184 (49); [(LNCNSnF4)3 + H]+,
5. Supplementary material
CCDC 636307, 636308 and 636309 contain the supple-
mentary crystallographic data for 1c, 5 and 5c. These data
lographic Data Centre, 12 Union Road, Cambridge CB2
1EZ, UK; fax: (+44) 1223-336-033; or e-mail:
1162
(11);
[Mꢀ(LNCNSnF4)+Na]+,
797
(100);
[Mꢀ(LNCNSnF4) + H]+, 775 (35); [LNCNSnF3 + K]+, 407
(61); Negative ion mode: [LNCNSnF4]ꢀ, 387 (100). After-
wards, the solid was dissolved in CDCl3 to give. 1H
NMR (CDCl3, 300 K, ppm): 9.78 (bs, NH+), 7.42–7.11
(m), 4.58 (bs, 2H, CH2N), 3.83 (bs, 2H, CH2N), 2.89 (bs,
6H, NCH3), 2.65 (bs, 6H, NCH3). 19F{1H} NMR (CDCl3,
300 K, ppm): ꢀ139 (bs), ꢀ148.6 (bs), ꢀ163.4 (bs).
119Sn{1H} NMR: (CDCl3, 300 K, ppm): ꢀ604.0 (ddt),
1J(119Sn, 19F) ꢁ 2520 Hz.
Acknowledgement
´
The authors thank Dr. Jirˇı Brus for CP-MAS NMR
spectra measurements. The financial support of the Science
Foundation of the Czech Republic (Grant No. 203/07/
0468) and the Ministry of Education of the Czech Republic
(Project VZ0021627501) is acknowledged.
References
For 5: Method A. The compound 5 (0.2 g, 0.36 mmol)
was dissolved in 10 ml of dichloromethane and NH4F (20
eq. excess) was added. The reaction mixture was stirred
for five days. Afterwards the soluble part was filtrated off
and the volatiles were vacuo removed. The product was
dissolved in CD3OD. 1H NMR (500.13 MHz, CD3OD,
300 K, ppm): 7.44 (bs, 1H), 7.27 (m, 2H), 5.16 (bs, NH4
+), 4.2 (bs, 4H, NCH2), 2.74 (bs, 12H, NCH3).19F{1H}
NMR (CD3OD, 300 K, ppm): ꢀ140 to ꢀ155 (vbs).
119Sn{1H} NMR (CD3OD, 300 K, ppm): ꢀ600.9 (pseudo-
quintet), 1J(119Sn, 19F) = 2308 Hz. ESI-MS: MW = 405.
Positive ion mode: m/z (%): [MꢀNH4F+H]+, 369 (100),
[LNCNSnF2]+, 349 (60), [MꢀFꢀ2*HFꢀCH2@N(CH3)2],
271 (68), [LNCN]+, 193 (57). Negative ion mode:
[LNCNSnF4]ꢀ, 387 (100).
[1] (a) For reviews see: E.F. Murphy, R. Murugavel, H.W. Roesky,
Chem. Rev. 97 (1997) 3425–3460;
(b) B. Jagirdar, E.F. Murphy, H.W. Roesky, Prog. Inorg. Chem. 48
(1999) 351–455;
(c) H. Dorn, E.F. Murphy, H.W. Roesky, J. Fluorine Chem. 86
(1997) 121.
[2] M. Makosza, R. Bujok, J. Fluorine Chem. 126 (2005) 209.
[3] M. Makosza, R. Bujok, Tetrahedron Lett. 45 (2004) 1385.
[4] N. Chaniotakis, K. Jurkschat, D. Muller, K. Perdikaki, G. Reeske,
¨
Eur. J. Inorg. Chem. (2004) 2283.
[5] J.L. Wardell, G.M. Spenser, in: R.B. King (Ed.), Encyclopedia of
Inorganic Chemistry, vol. 8, Wiley, New York, 1994, p. 4172.
[6] S.S. Al-Juaid, S.M. Dhaher, C. Eaborn, P.B. Hitchcock, J. Organo-
met. Chem. 325 (1987) 117.
[7] H. Reuter, H. Puff, J. Organomet. Chem. 379 (1989) 223.
[8] J. Beckmann, D. Horn, K. Jurkschat, F. Rosche, M. Schurmann, U.
¨
Zachwieja, D. Dakternieks, A. Duthie, E.K.L. Lim, Eur. J. Inorg.
Chem. (2003) 164.
[9] U. Kolb, M. Dra¨ger, B. Jousseaume, Organometallics 10 (1991) 2737.
[10] D. Tudela, R. Fernandez, V.K. Belsky, V.E. Zavodnik, J. Chem.
Soc., Dalton Trans. (1996) 2123.
[11] D. Dakternieks, H. Zhu, Organometallics 11 (1992) 3820.
[12] W.-P. Leung, W.-H. Kwok, Z.-Y. Zhou, T.C.W. Mak, Organomet-
allics 22 (2003) 1751.
Method B. To a toluene solution of 5 (90 mg,
0.16 mmol) was added LCNnBu2SnF (190 mg, 0.48 mmol)
and the reaction mixture was stirred and heated at 80 °C
for 5 days. Afterwards toluene was removed by filtration
and the remaining insoluble solid was washed several times
with toluene. The solid was investigated by ESI/MS:
MW = 1161; m/z (%): Positive ion mode: [(LNCN
-
[13] N. Pieper, C. Klaus-Mrestani, M. Schurmann, K. Jurkschat, M.
¨
SnF4)3+K]+, 1200 (10); [(LNCNSnF4)3+Na]+, 1184 (49);
Biesemans, I. Verbruggen, J.C. Martins, R. Willem, Organometallics
16 (1997) 1043.
[14] M. Mehring, I. Vrasidas, D. Horn, M. Schurmann, K. Jurkschat,
¨
[(LNCNSnF4)3+H]+, 1162 (11); [Mꢀ(LNCNSnF4)+ Na]+,
797
(100);
[Mꢀ(LNCNSnF4)+H]+,
775
(35);
[LNCNSnF3+K]+, 407 (61). Negative ion mode:
[LNCNSnF4]ꢀ, 387 (100). Afterwards the solid was dis-
Organometallics 20 (2001) 4647.
[15] N. Pieper, C. Klaus-Mrestani, M. Schurmann, K. Jurkschat, M.
Biesemans, I. Verbruggen, R. Willem, Organometallics 11 (1992) 3820.
[16] N. Pieper, C. Ludwig, M. Schurmann, K. Jurkschat, M. Biesemans,
I. Verbruggen, R. Willem, Phosphorus Sulfur Silicon Relat. Elem.
151 (1999) 305.
1
solved in CDCl3 to give: H NMR (CDCl3, 300 K, ppm):
9.78 (bs, NH+), 7.42–7.11 (m), 4.58 (bs, 2H, CH2N), 3.83
(bs, 2H, CH2N), 2.89 (bs, 6H, NCH3), 2.65 (bs, 6H,