C O M M U N I C A T I O N S
Table 1. Cinchona Alkaloid-Catalyzed Ketene-N-Thioacyl Imine [4
+ 2] Cycloadditionsa
Scheme 1
yieldb
(%)
6
% ee
(cis:trans)c,d
entry
R1
R2
R3
a
b
c
d
e
f
g
h
i
Me
CH2CH2Ph
C6H11
CH2OBn
Et
Et
Et
Et
Et
Et
Bn
Bn
Bn
Bn
Bn
Bn
76 (6a)
75 (6b)
51 (6c)
68 (6d)
65 (6e)
59 (6f)
67 (6g)
74 (ent-6h)
72 (6i)
58 (6j)
>98 (95:5)
c
Me
Me
Et
>98 (95:5)
>98 (>97:3)
>98 (>97:3)
>98 (>97:3)
>98 (>97:3)
98 (>97:3)
CH2CH2Ph
CH2CH2Ph
C6H5
CH2CH2CH3
CH2CH(CH3)2
CH2CH(CH3)2
CH2CH2Ph
CH2CH2Ph
C6H5
ester provided the R,â-dipeptide derivative 13 (84%), suggestive
of the thiazinone’s function as an activated ester surrogate.12
Hydride-mediated thiazinone reduction led directly to the enan-
tioenriched â-amino aldehyde derivative 14 (70%).
Cinchona alkaloid-catalyzed ketene-imine cycloadditions offer
useful alternatives to traditional asymmetric Mannich reactions. The
ketene-imine cycloadditions are mechanistically distinct and, in
several aspects, complementary to existing direct Mannich reactions.
These reaction attributes are expected to make these ketene-imine
cycloadditions useful alternatives for executing Mannich-type C-C
bond constructions.
CH2Ph
Me
Me
Me
Et
95 (>97:3)
>98 (>97:3)
>98 (>97:3)
>98 (>97:3)
>98 (>97:3)
j
k
l
nPr
iPr
63 (6k)
59 (ent-6l)
Et
a Catalyst (20 mol %): 1, entries a-g, i-k; 2, entries h, l. b Isolated
yield. c Enantiomeric excess determined by chiral HPLC; minor enantiomer
not observed for values >98. d Diastereomer ratios determined by 1H NMR
analysis of crude product mixtures; minor diastereomer not observed for
values >97:3.
Acknowledgment. Support from the National Institutes of
Health (R01 GM63151 and P50 GM067082) and the Merck
Research Laboratories is gratefully acknowledged.
(e.g., 5) that afforded exclusively enamine 7. Similarly, attempts
to employ the carbamate-derived sulfone 8 as the proelectrophile
afforded no cycloaddition, suggesting that the nucleophilicity of
the thiocarbonyl moiety was critical to the success of this reaction.
The alkaloid-catalyzed ketene-N-thioacyl imine cycloadditions
proved to be generally effective for a variety of alkyl-substituted
ketenes and unactivated imine electrophiles (Table 1). Cycloaddi-
tions involving R-amido sulfones bearing straight chain or branched
alkyl substituents uniformly proceed with nearly complete control
of absolute and relative stereochemistry in affording the 4,5-cis-
disubstituted 1,3-thiazin-6-one derivatives 6a-l (g95% ee, g95:5
cis:trans).10 These formal [4 + 2] cycloadditions are similarly
accommodating of substituted ketenes incorporating aliphatic and
branched alkyl substituents with no deviation in stereoselectivity.
Cycloadditions involving aryl R-amido sulfones (entries f and l)
afford modestly attenuated reaction yields due to competing
formation of the â-lactam adducts (e.g., 9), possessing the
unanticipated trans diastereoselection that was not observed for
alkyl imine electrophiles (eq 2).
Supporting Information Available: Experimental procedures and
1H and 13C spectra (PDF). This material is available free of charge via
References
(1) Mannich, C.; Kro¨sche, W. Arch. Pharm. 1912, 250, 647-667.
(2) For recent reviews, see: (a) Cordo´va, A. Acc. Chem. Res. 2004, 37, 102-
112. (b) Friestad, G. K.; Mathies, A. K. Tetrahedron 2007, 63, 2541-
2569.
(3) (a) Enders, D.; Grondal, C.; Vrettou, M.; Raabe, G. Angew. Chem., Int.
Ed. 2005, 44, 4079-4083. (b) Yamaguchi, A.; Matsunaga, S.; Shibasaki,
M. Tetrahedron Lett. 2006, 47, 3985-3989. (c) Trost, B. M.; Jaratja-
roonphong, J.; Reutrakul, V. J. Am. Chem. Soc. 2006, 128, 2778-2779.
(d) Song, J.; Wang, Y.; Deng, L. J. Am. Chem. Soc. 2006, 128, 6048-
6049. (e) Salter, M. M.; Kobayashi, J.; Shimizu, Y.; Kobayashi, S. Org.
Lett. 2006, 8, 3533-3536.
(4) (a) Zhu, C.; Shen, X.; Nelson, S. G. J. Am. Chem. Soc. 2004, 126, 5352-
5353 and references therein. (b) Shen, X.; Wasmuth, A. S.; Zhao, J.; Zhu,
C.; Nelson, S. G. J. Am. Chem. Soc. 2006, 128, 7438-7439.
(5) (a) Chemla, F.; Hebbe, V.; Normant, J.-F. Synthesis 2000, 75-77. For a
review, see: (b) Petrini, M. Chem. ReV. 2005, 105, 3949-3977.
(6) For Lewis base catalyzed [2 + 2] cycloadditions of ketenes and non-
enolizable imines, see: (a) France, S.; Shah, M. H.; Weatherwax, A.;
Wack, H.; Roth, J. P.; Lectka, T. J. Am. Chem. Soc. 2005, 127, 1206-
1215 and references therein. (b) Lee, E. C.; Hodous, B. L.; Bergin, E.;
Shih, C.; Fu, G. C. J. Am. Chem. Soc. 2005, 127, 11586-11587 and
references therein.
(7) For related [4 + 2] ketene cycloadditions, see: (a) Friot, C.; Reliquet,
A.; Reliquet, F.; Meslin, J. C. Synthesis 2000, 695-702. (b) Landreau,
C.; Deniaud, D.; Reliquet, F.; Reliquet, A.; Meslin, J. C. Heterocycles
2000, 53, 2667-2677. (c) Bharatam, P. V.; Kumar, R. S.; Mahajan, M.
P. Org. Lett. 2000, 2, 2725-2728.
(8) For recent examples of alkaloid-catalyzed [4 + 2] ketene cycloadditions,
see: (a) Bekele, T.; Shah, M. H.; Wolfer, J.; Ciby, J.; Abraham, C. J.;
Weatherwax, A.; Lectka, T. J. Am. Chem. Soc. 2006, 128, 1810-1811.
(b) Wolfer, J.; Bekele, T.; Abraham, C. J.; Dogo-Isonagie, C.; Lectka, T.
Angew. Chem., Int. Ed. 2006, 45, 7398-7400. (c) Abraham, C. J.; Paull,
D. H.; Scerba, M. T.; Grebinski, J. W.; Lectka, T. J. Am. Chem. Soc.
2006, 128, 13370-13371.
(9) For the preparation of R-amido sulfones 3, see: Engberts, J. B. F. N.;
Olijnsma, T.; Strating, J. Recl. TraV. Chim. Pays-Bas 1966, 85, 1211-
1222.
(10) See Supporting Information for details of stereochemical proof.
(11) (a) Wynberg, H. Top. Stereochem. 1986, 16, 87-130. (b) France, S.;
Guerin, D. J.; Miller, S. J.; Lectka, T. Chem. ReV. 2003, 103, 2985-
3012.
(12) Similar reactivity is observed for related N-acyl thiazolidinethione
derivatives: Crimmins, M. T.; King, B. W.; Tabet, E. A.; Chaudhary, K.
J. Org. Chem. 2001, 66, 894-902.
Stereoselectivity in the ketene-imine cycloadditions was con-
sistent C-C bond formation proceeding via the quinine-derived
enolate 4; imine approach to the exposed si enolate face would
deliver the carbamodithioate anion 10 (Figure 2).11 The high syn
selectivity characterizing these reactions can be attributed to
enolate-imine addition proceeding through either open or lithium-
coordinated, closed transition states 11 or 12, respectively. Sulfur’s
enhanced nucleophilicity relative to nitrogen dictates that 10
collapses by sulfur addition to the acyl ammonium ion to generate
the formal [4 + 2] cycloadduct 6.
The utility of the enantioenriched cycloadducts as surrogates for
traditional Mannich products was revealed by the ring opening
processes available to the thiazinone heterocycles (Scheme 1).
Amine-mediated ring opening of thiazinone 6i with valine methyl
JA074845N
9
J. AM. CHEM. SOC. VOL. 129, NO. 38, 2007 11691