Communications
recognition system could be adapted for the preparation of
biological detectors or sensors. Currently, we are studying
electrochemically and photochemically controllable molec-
ular switches based on this recognition system.
Received: May 18, 2007
Published online: July 30, 2007
Keywords: anion recognition · host–guest systems ·
.
molecular switches · rotaxanes · urea
[1] a) J.-P. Collin, C. Dietrich-Buchecker, P. Gaviæa, M. C. Jimenez-
Molero, J.-P. Sauvage, Acc. Chem. Res. 2001, 34, 477 – 487; b) G.
Kaiser, T. Jarrosson, S. Otto, Y.-F. Ng, A. D. Bond, J. K. M.
Sanders, Angew. Chem. 2004, 116, 1993 – 1996; Angew. Chem.
Int. Ed. 2004, 43, 1959 – 1962; c) T. Iijima, S. A. Vignon, H.-R.
Tseng, T. Jarrosson, J. K. M. Sanders, F. Marchioni, M. Venturi,
E. Apostoli, V. Balzani, J. F. Stoddart, Chem. Eur. J. 2004, 10,
´
6375 – 6392; d) J. D. Badjic, V. Balzani, A. Credi, S. Silvi, J. F.
Stoddart, Science 2004, 303, 1845 – 1849.
[2] C. M. Keaveney, D. A. Leigh, Angew. Chem. 2004, 116, 1242 –
1244; Angew. Chem. Int. Ed. 2004, 43, 1222 – 1224.
Scheme 5. Anion-controllable switching of molecular switch 7.
[3] a) M. Montalti, L. Prodi, Chem. Commun. 1998, 1461 – 1462;
b) C.-F. Lin, C.-C. Lai, Y.-H. Liu, S.-M. Peng, S.-H. Chiu, Chem.
Eur. J. 2007, 13, 4350 – 4355.
[4] B. W. Laursen, S. Nygaard, J. O. Jeppesen, J. F. Stoddart, Org.
Lett. 2004, 6, 4167 – 4170.
pyridine diamide to the aryl protons of carbamate terminus
(Hj’’) and the protons adjacent to the carbamate motif (Hl’),
confirming the encircling of the macrocyclic component
about the carbamate moiety under these conditions. Thus,
translocation of the interlocked macrocycle from the urea
station to the carbamate station could be achieved by
introducing an excess of acetate anions, which compete with
the macrocyclic component for binding to the urea station.
Subsequent addition of 5 equivalents of NaClO4 to this
[5] a) T. S. Snowden, E. V. Anslyn, Curr. Opin. Chem. Biol. 1999, 3,
740 – 746; b) P. D. Beer, P. A. Gale, Angew. Chem. 2001, 113,
502 – 532; Angew. Chem. Int. Ed. 2001, 40, 486 – 516; c) R.
Martínez-Mµæez, F. Sancenón, Chem. Rev. 2003, 103, 4419 –
4476; d) B. Tomapatanaget, T. Tuntulani, J. A. Wisner, P. D.
Beer, Tetrahedron Lett. 2004, 45, 663 – 666; e) V. Amendola, D.
Esteban-Gómez, L. Fabbrizzi, M. Licchelli, Acc. Chem. Res.
2006, 39, 343 – 353; f) T. Gunnlaugsson, M. Glynn, G. M. Tocci,
P. E. Kruger, F. M. Pfeffer, Coord. Chem. Rev. 2006, 250, 3094 –
3117; g) P. A. Gale, R. Quesada, Coord. Chem. Rev. 2006, 250,
3219 – 3244; h) S. J. Brooks, S. E. García-Garrido, M. E. Light,
P. A. Cole, P. A. Gale, Chem. Eur. J. 2007, 13, 3320 – 3329.
[6] Pseudorotaxane intermediates comprising urea-based threads
and amide-based macrocycles have been proposed in elegant
one-pot rotaxane syntheses from diisocyanates, a bulky aryl
amine, and amide-based macrocycles. The true recognition
system in this reaction, however, was not identified; the authors
stated that “the mechanism of this rotaxane formation is yet not
proven”. See: O. Braun, F. Vögtle, Synlett 1997, 1184 – 1186.
[7] a) P.-N. Cheng, P.-Y. Huang, W.-S. Li, S.-H. Ueng, W.-C. Hung,
Y.-H. Liu, C.-C. Lai, S.-M. Peng, I. Chao, S.-H. Chiu, J. Org.
Chem. 2006, 71, 2373 – 2375; b) P.-N. Cheng, C.-F. Lin, Y.-H. Liu,
C.-C. Lai, S.-M. Peng, S.-H. Chiu, Org. Lett. 2006, 8, 435 – 438.
[8] A. P. Bisson, V. M. Lynch, M.-K. C. Monahan, E. V. Anslyn,
Angew. Chem. 1997, 109, 2345 – 2347; Angew. Chem. Int. Ed.
Engl. 1997, 36, 2340 – 2342.
1
solution resulted in a H NMR spectrum (Figure 3c) similar
to that of the original spectrum of [2]rotaxane 7 (Figure 3a),
suggesting that the macrocycle had returned to its preferred
urea station, presumably because of precipitation of the
acetate anion as NaOAc and the relatively weak interactions
between the urea moiety and perchlorate anions under these
conditions.[20] Therefore, we could operate the translational
isomerism of the interlocked molecular switch 7 reversibly
through the sequential addition and removal of acetate anions
(Scheme 5). Unlike previously reported systems, which
required ion-pairing compounds to exchange the counter-
anions or the creation of negative charge (through deproto-
nation) on the molecular switch itself, we operated our
[2]rotaxane-based molecular switch 7 through the compet-
itive binding of external acetate anions to the urea recog-
nition site, which allowed the [2]rotaxane to remain neutral
throughout the switching process.
We have demonstrated that macrocycle 1 can form
[2]pseudorotaxane complexes, stabilized through intermolec-
ular hydrogen bonding, with diphenylurea derivatives in low-
polarity solvents. We exploited the fact that macrocycle 1
recognizes urea moieties to prepare a unique set of molecular
switches that undergo anion-mediated switching, in which
translational isomerism was achieved through competition
between external acetate anions and the macrocyclic compo-
nent for binding to the urea station. Because of the
physiological importance of carboxylate anions and urea
derivatives, it might be possible that this new molecular
[9] Amide-based macrocycles have been used to construct many
elegant interlocked molecules. In most circumstances, the
threading of guests into these macrocycles required the coop-
eration of two or more suitably positioned carbonyl groups or
anionic templates; see: a) G. A. Breault, C. A. Hunter, P. C.
Mayers, Tetrahedron 1999, 55, 5265 – 5293; b) C. Reuter, W.
Wienand, G. M. Hubner, C. Seel, F. Vögtle, Chem. Eur. J. 1999, 5,
2692 – 2697; c) J. A. Wisner, P. D. Beer, M. G. B. Drew, M. R.
Sambrook, J. Am. Chem. Soc. 2002, 124, 12469 – 12476; d) M. R.
Sambrook, P. D. Beer, J. A. Wisner, R. L. Paul, A. R. Cowley, J.
Am. Chem. Soc. 2004, 126, 15364 – 15365; e) E. R. Kay, D. A.
Leigh, Top. Curr. Chem. 2005, 262, 133 – 177; f) D. A. Leigh,
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2007, 46, 6629 –6633