Journal of the American Chemical Society
Page 4 of 6
(NSERC PDF), N.S.R. (Boehringer Ingelheim), and D.D.F.
Furthermore, the successful development of a highly
active pseudo-dimeric catalyst designed around the 4H-
activation mode suggests that the 4H-mechanism is most
likely operative under the conditions described above.
To evaluate whether the 2H-activation mode is also ac-
cessible to the dimeric catalysts, the intermediate
cat•oxocarbenium•Cl– complexes and the transition
structures for oxocarbenium alkylation promoted by the
2H- and 4H-arrangements of catalyst 6b were examined
computationally. Across a variety of functionals, both
the intermediate and transition structures in which the
bis-thiourea was forced to access a 2H-geometry were
predicted to be significantly higher in energy than the
alternative 4H-structures. (See Supporting Information
for additional discussion.)
1
2
3
4
5
6
7
8
(Eli Lilly). The authors thank Dr. Shao-Liang Zheng (Har-
vard X-Ray Laboratory) for collection and refinement of
X-ray crystallographic data, Dr. Robert Knowles (Prince-
ton) for early crystallographic analyses, Dr. Alison E.
Wendlandt and Andrew J. Bendelsmith (Harvard) for syn-
thetic assistance, and Daniel A. Strassfeld (Harvard) for
helpful discussion.
REFERENCES
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(1) For reviews, see: (a) Zhang, Z.; Schreiner, P. R. Chem. Soc.
Rev. 2009, 38, 1187–1198. (b) Brak, K.; Jacobsen, E. N. Angew. Chem.
Int. Ed. 2012, 52, 534–561. (c) Phipps, R. J.; Hamilton, G. L.; Toste,
F. D. Nature Chem. 2012, 4, 603–614. (d) Beckendorf, S., Asmus, S.;
Mancheño, O. G. Chem. Cat. Chem. 2012, 4, 926–936. (e) Mahlau, M.;
List, B. Angew. Chem. Int. Ed. 2013, 52, 518–533. (f) Seidel, D. Synlett
2014, 25, 783–794.
In conclusion, the design of highly active and efficient
anion abstraction catalyst 6a represents the culmination
of a series of mechanistic insights. The mechanism-
driven design strategy has afforded a linked, bis-thiourea
catalyst system that overcomes many of the practical
limitations traditionally associated with H-bond-donor-
mediated anion-abstraction catalysis. Key insights ena-
bled formation of a pseudo-dimeric complex for cooper-
ative activation of a chloroether electrophile by a 4H-
mechanism while disfavoring nonproductive ground-
state aggregation. The high efficiencies enabled by this
catalyst design hold promise for application of dual hy-
drogen-bond-donor-mediated anion-abstraction catalysis
to historically challenging transformations. In this vein,
the development of highly stereoselective reactions with
tertiary alkyl chloride and glycosyl chloride electrophiles
is the focus of our ongoing attention.
(2) For select examples of enantioselective anion-binding catal-
ysis with dual H-bond donors, see: (a) Taylor, M. S.; Tokunaga, N.;
Jacobsen, E. N. Angew. Chem. Int. Ed. 2005, 44, 6700–6704. (b) Ra-
heem, I. T.; Thiara, P. V.; Peterson, E. A.; Jacobsen, E. N. J. Am.
Chem. Soc. 2007, 129, 13404–13405. (c) Reisman, S. E.; Doyle, A. G.;
Jacobsen, E. N. J. Am. Chem. Soc. 2008, 130, 7198–7199. (d) Klausen,
R. S.; Jacobsen, E. N. Org. Lett. 2009, 11, 887–890. (e) De, C. K.;
Klauber, E. G.; Seidel, D. J. Am. Chem. Soc. 2009, 131, 17060–17061.
(f) Xu, H.; Zuend, S. J.; Woll, M. G.; Tao, Y.; Jacobsen, E. N. Science,
2010, 327, 986–990. (g) Knowles, R. R.; Lin, S.; Jacobsen, E. N. J.
Am. Chem. Soc. 2010, 132, 5030–5032. (h) Brown, A. R.; Kuo, W.-H.;
Jacobsen, E. N. J. Am. Chem. Soc. 2010, 132, 9286–9288. (i) Burns, N.
Z.; Witten, M. G.; Jacobsen, E. N. J. Am. Chem. Soc. 2011, 133,
14578–14581. (j) Lin, S.; Jacobsen, E. N. Nature Chem. 2012, 4, 817–
824. (k) Schafer, A. G., Wieting, J. M., Fisher, T. J.; Mattson, A. E.
Angew. Chem. Int. Ed. 2013, 52, 11321–11324. (l) Metz, A. E.; Rama-
lingam, K.; Kozlowski, M. C. Tetrahedron Lett. 2015, 5180–5184. (m)
Mittal, N.; Lippert, K. M.; De, C. K.; Klauber, E. G.; Emge, T. J.;
Schreiner, P. R.; Seidel, D. J. Am. Chem. Soc. 2015, 137, 5748–5758.
(n) Hardman–Baldwin, A. M.; Visco, M. D.; Wieting, J. M.; Stern, C.;
Kondo, S.; Mattson, A. E. Org. Lett. 2016, 18, 3766–3769.
(3) A few noteworthy exceptions have been reported. For select
examples of highly efficient urea or thiourea-catalyzed transfor-
mations, see: (a) Kotke, M; Schreiner, P. R. Tetrahedron, 2006, 62,
434–439. (b) Kotke, M. Schreiner, P. R. Synthesis, 2007, 779–790. (c)
Zuend, S. J.; Coughlin, M. P.; Lalonde, M. P.; Jacobsen, E. N. Nature
2009, 461, 968–970. (d) Birrell, J. E.; Desrosiers, J.-N.; Jacobsen, E.
N. J. Am. Chem. Soc. 2011, 133, 13872–13875.
(4) (a) Ford, D. D.; Lehnherr, D.; Kennedy, C. R.; Jacobsen,
E. N. J. Am. Chem. Soc. 2016, 138, 7860–7863. (b) Ford, D. D.;
Lehnherr, D.; Kennedy, C. R.; Jacobsen, E. N. ACS Catal. 2016, 6,
4616–4620.
(5) For representative reports in which novel anion-binding
catalysts were validated using the alkylation of α-chloroisochroman
with silyl ketene acetal nucleophiles as a benchmark reaction, see: (a)
Kniep, F.; Jungbauer, S. H.; Zhang, Q.; Walter, S. M.; Schindler, S.;
Schnapperelle, I.; Herdtweck, E.; Huber, S. M. Angew. Chem. Int. Ed.
2013, 52, 7028–7032. (b) Jungbauer, S. H.; Huber, S. M. J. Am. Chem.
Soc. 2015, 137, 12110–12120.
(6) (a) Konsler, R. G.; Karl, J., Jacobsen, E. N. J. Am. Chem.
Soc. 1998, 120, 10780–10781. (b) Ready, J. M.; Jacobsen, E. N. J. Am.
Chem. Soc. 2001, 123, 2687–2688. (c) Ready, J. M.; Jacobsen, E. N.
Angew. Chem. Int. Ed. 2002, 41, 1374–1377. (d) Denmark, S. E.; Fu, J.
J. Am. Chem. Soc. 2003, 125, 2208–2216. (e) Nakano, K.; Hashimoto,
S.; Nozaki, K. Chem. Sci. 2010, 1, 369– 373. (f) Kalow, J.; Doyle, A. G.
J. Am. Chem. Soc. 2011, 133, 16001–16012. (g) Klimczyk, S.; Misale,
A.; Huang, X.; Maulide, N. Angew. Chem. Int. Ed. 2015, 54, 10365–
10369.
ASSOCIATED CONTENT
The Supporting Information is available free of charge on
the ACS Publications website.
Experimental procedures; spectroscopic data; kinetic data
(tabulated and graphical); discussion, geometries, and ener-
gies of calculated stationary points; summary of alternative
linking
strategies
(PDF).
X-ray crystallographic structures for synthetic intermediates
and select urea and thiourea catalysts (CCDC 1478174,
1482963–1482976, 1501460) (CIF)
AUTHOR INFORMATION
Corresponding Author
Author Contributions
‡These authors contributed equally.
Funding Sources
No competing financial interest has been declared.
ACKNOWLEDGMENT
(7) For examples in which intramolecular H-bonding has been
proposed to increase the “2H” anion- or neutral Lewis base-binding
ability of a urea or thiourea catalyst, see: (a) Jones, C. R.; Pantoş, G.
This work was supported by the NIH (GM-43214) and
through fellowships to C.R.K. (NSF, DGE1144152), D.L.
ACS Paragon Plus Environment