5252 Journal of Medicinal Chemistry, 2007, Vol. 50, No. 22
Letters
(13) Vos, T. J.; Caracoti, A.; Che, J. L.; Dai, M.; Farrer, C. A.; et al.
Identification of 2-[2-[2-(5-bromo-2- methoxyphenyl)-ethyl]-3-fluo-
rophenyl]-4,5-dihydro-1H-imidazole (ML00253764), a small mol-
ecule melanocortin 4 receptor antagonist that effectively reduces
tumor-induced weight loss in a mouse model. J. Med. Chem. 2004,
47, 1602-1604.
(14) Nicholson, J. R.; Kohler, G.; Schaerer, F.; Senn, C.; Weyermann, P.
et al. Peripheral administration of a melanocortin 4-receptor inverse
agonist prevents loss of lean body mass in tumor-bearing mice. J.
Pharmacol. Exp. Ther. 2006, 317, 771-777.
(15) Marks, D. L.; Cone, R. D. The role of the melanocortin-3 receptor
in cachexia. Ann. N. Y. Acad. Sci. 2003, 994, 258-266.
(16) Tucci, F. C.; White, N. S.; Markison, S.; Joppa, M.; Tran, J. A.; et
al. Potent and orally active non-peptide antagonists of the human
melanocortin-4 receptor based on a series of trans-2-disubstituted
cyclohexylpiperazines. Bioorg. Med. Chem. Lett. 2005, 15, 4389-
4395.
(17) Markison, S.; Foster, A. C.; Chen, C.; Brookhart, G. B.; Hesse, A.;
et al. The regulation of feeding and metabolic rate and the prevention
of murine cancer cachexia with a small-molecule melanocortin-4
receptor antagonist. Endocrinology 2005, 146, 2766-2773.
(18) Nozawa, D.; Okubo, T.; Ishii, T.; Kakinuma, H.; Chaki, S.; et al.
Structure-activity relationships of novel piperazines as antagonists
for the melanocortin-4 receptor. Bioorg. Med. Chem. 2007, 15, 1989-
2005.
(19) Nozawa, D.; Okubo, T.; Ishii, T.; Takamori, K.; Chaki, S.; et al.
Novel piperazines: Potent melanocortin-4 receptor antagonists with
anxiolytic-like activity. Bioorg. Med. Chem. 2007, 15, 2375-2385.
(20) Shimazaki, T.; Chaki, S. Anxiolytic-like effect of a selective and
non-peptidergic melanocortin 4 receptor antagonist, MCL0129, in a
social interaction test. Pharmacol. Biochem. BehaV. 2005, 80, 395-
400.
(21) Foster, A. C.; Chen, C.; Markison, S.; Marks, D. L. MC4 receptor
antagonists: A potential treatment for cachexia. IDrugs 2005, 8, 314-
319.
(22) Jiang, W.; Tucci, F. C.; Chen, C. W.; Arellano, M.; Tran, J. A.; et
al. Arylpropionylpiperazines as antagonists of the human melano-
cortin-4 receptor. Bioorg. Med. Chem. Lett. 2006, 16, 4674-4678.
(23) Chen, C. W.; Tran, J. A.; Jiang, W.; Tucci, F. C.; Arellano, M.; et
al. Propionylpiperazines as human melanocortin-4 receptor ligands.
Bioorg. Med. Chem. Lett. 2006, 16, 4800-4803.
(24) Jiang, W.; Chen, C.; Marinkovic, D.; Tran, J. A.; Chen, C. W.; et al.
Practical asymmetric synthesis of alpha-branched 2-piperazinylben-
zylamines by 1,2-additions of organometallic reagents to N-tert-
butanesulfinyl imines. J. Org. Chem. 2005, 70, 8924-8931.
(25) Nickolls, S. A.; Cismowski, M. I.; Wang, X.; Wolff, M.; Conlon, P.
J.; et al. Molecular determinants of melanocortin 4 receptor ligand
binding and MC4/MC3 receptor selectivity. J. Pharmacol. Exp. Ther.
2003, 304, 1217-1227.
Compound 10d was also studied in mice, dogs, and monkeys
for its PK properties in these species (Table 5). In mice, 10d
exhibited a moderate plasma clearance of 29.6 mL/min‚kg and
its bioavailability was 32%. Its half-life of 1.6 h was short and
its brain penetration was relatively low. The low brain penetra-
tion or short t1/2 of 10d might explain the requirement of a high
dose for its in vivo efficacy in this species. In dogs and monkeys,
10d displayed a moderate oral bioavailability of 19%. The half-
life of this compound was 6.7 h in dogs, much longer than that
in monkeys (t1/2 ) 2.9 h), which might be associated with its
lower volume of distribution in this species.
In conclusion, we conducted a detailed study on a set of
piperazinebenzylamines bearing an amine side chain as potent
and selective antagonists of the human melanocortin-4 receptor.
One analog, 1-{2-[(1S)-(3-dimethylaminopropionyl)amino-2-
methylpropyl]-4-methylphenyl}-4-[(2R)-methyl-3-(4-chlorophe-
nyl)propionyl]piperazine (10d) was identified to have good
potency and selectivity. Despite its relatively high logD value
(3.4), 10d had good aqueous solubility. It was profiled for its
metabolic and pharmacokinetic properties in several animal
species. Finally, this compound demonstrated oral efficacy in
a mouse tumor-induced cachexia model.
Acknowledgment. The authors would like to thank Dr.
Daniel Marks of Oregon Health & Science University for his
help in performing the mouse cachexia study.
Supporting Information Available: The synthesis and char-
acterization of compounds 7c, 8a-c, 9, and 10a-f, the protocols
for pharmacokinetics, and in vivo efficacy studies. This material
References
(1) Gordon, J. N.; Green, S. R.; Goggin, P. M. Cancer cachexia. Q. J.
Med. 2005, 98, 779-788.
(2) Bossola, M.; Pacelli, F.; Tortorelli, A.; Doglietto, G. B. Cancer
cachexia: It’s time for more clinical trials. Ann. Surg. Oncol. 2007,
14, 276-285.
(3) Cone, R. D. The central melanocortin system and energy homeostasis.
Trends Endocrinol. Metab. 1999, 10, 211-216.
(4) Tao, Y. X.; Segaloff, D. L. Functional analyses of melanocortin-4
receptor mutations identified from patients with binge eating disorder
and nonobese or obese subjects. J. Clin. Endocrinol. Metab. 2005,
90, 5632-5638.
(5) MacKenzie, R. G. Obesity-associated mutations in the human
melanocortin-4 receptor gene. Peptides 2006, 27, 395-403.
(6) Boyce, R. S.; Duhl, D. M. Melanocortin-4 receptor agonists for the
treatment of obesity. Curr. Opin. InVestig. Drugs 2004, 5, 1063-
1071.
(7) Foster, A. C.; Joppa, M.; Markison, S.; Gogas, K. R.; Fleck, B. A.;
et al. Body weight regulation by selective MC4 receptor agonists
and antagonists. Ann. N. Y. Acad. Sci. 2003, 994, 103-110.
(8) DeBoer, M. D.; Marks, D. L. Therapy insight: Use of melanocortin
antagonists in the treatment of cachexia in chronic disease. Nat. Clin.
Pract. Endocrinol. Metab. 2006, 2, 459-466.
(9) Wisse, B. E.; Frayo, R. S.; Schwartz, M. W.; Cummings, D. E.
Reversal of cancer anorexia by blockade of central melanocortin
receptors in rats. Endocrinology 2001, 142, 3292-3301.
(10) Marks, D. L.; Butler, A. A.; Turner, R.; Brookhart, G.; Cone, R. D.
Differential role of melanocortin receptor subtypes in cachexia.
Endocrinology 2003, 144, 1513-1523.
(11) Joppa, M. A.; Gogas, K. R.; Foster, A. C.; Markison, S. Central
infusion of the melanocortin receptor antagonist agouti-related peptide
(AgRP(83-132)) prevents cachexia-related symptoms induced by
radiation and colon-26 tumors in mice. Peptides 2007, 28, 636-
642.
(26) Sebhat, I. K.; Martin, W. J.; Ye, Z.; Barakat, K.; Mosley, R. T.; et
al. Design and pharmacology of N-[(3R)-1,2,3,4-tetrahydroisoquino-
linium- 3-ylcarbonyl]-(1R)-1-(4-chlorobenzyl)- 2-[4-cyclohexyl-4-
(1H-1,2,4-triazol- 1-ylmethyl)piperidin-1-yl]-2-oxoethylamine (1), a
potent, selective, melanocortin subtype-4 receptor agonist. J. Med.
Chem. 2002, 45, 4589-4593.
(27) Pontillo, J.; Tran, J. A.; Fleck, B. A.; Marinkovic, D.; Arellano, M.;
et al. Piperazinebenzylamines as potent and selective antagonists of
the human melanocortin-4 receptor. Bioorg. Med. Chem. Lett. 2004,
14, 5605-5609.
(28) Tang, W.; Stearns, R. A. Heterotropic cooperativity of cytochrome
P450 3A4 and potential drug-drug interactions. Curr. Drug Metab.
2001, 2, 185-198.
(29) Numata, A.; Kondo, Y.; Sakamoto, T. General synthetic method for
naphthyridines and their N-oxides containing isoquinolinic nitrogen.
Synthesis 1999, 306-311.
(30) Bjorkman, S. Prediction of the volume of distribution of a drug:
Which tissue-plasma partition coefficients are needed? J. Pharm.
Pharmacol. 2002, 54, 1237-1245.
(31) Fromm, M. F. Importance of P-glycoprotein at blood-tissue barriers.
Trends Pharmacol. Sci. 2004, 25, 423-429.
(12) Foster, A. C.; Chen, C. Melanocortin-4 receptor antagonists as
potential therapeutics in the treatment of cachexia. Curr. Top. Med.
Chem. 2007, 7, 1131-1136.
JM070806A