C.-M. Ma et al. / Bioorg. Med. Chem. 15 (2007) 6830–6833
6833
pathway different from that of 1,3-b-glucan. Candida
References and notes
species possess both 1,3- and 1,6-b-glucan in their cell
wall, while Aspergillus carries only 1,3-b-glucan.11–15
1. Georgopapadaku, N. H. Science 1994, 264, 371.
2. Ma, C. M.; Takeda, S.; Hibino, S.; Daneshtalab, M.
Heterocycles 2006, 68, 721.
The in vitro biological assessment of the chlorogenic
acid analogues synthesized in this study reveals a strong
antifungal activity against C. neofrmans, a good to mod-
erate activity against C. albicans, and weak to no activity
against A. fumigatus. Considering the above biological
activity results, as well as the differences in glucan struc-
tures in the tested fungi, we speculate that these chloro-
genic acid derivatives may exhibit their antifungal effect
via inhibition of 1,6-b-glucan synthase. Other possible
mechanism is increasing the permeability of fungal cell
wall via mimicking the action of bactericidal/permeabil-
ity-increasing protein, a mechanism that has been re-
ported for antifungal activity of some peptides that are
structurally related to chlorogenic acid.16
3. Zambias, R. A.; Hammond, M. L.; Heck, J. V.; Bartizal,
K.; Trainor, C.; Abruzzo, G.; Schmatz, D. M.; Nollstadt,
K. M. J. Med. Chem. 1992, 35, 2843.
4. Robinson, W. E., Jr.; Reinecke, M. G.; Abdel-Malek, S.;
Jia, Q.; Chow, S. A. Proc. Natl. Acad. Sci. U.S.A. 1996,
93, 6326.
5. Matsuse, T. M.; Nakabayashi, T.; Lim, Y. A.; Hussein,
G M. E.; Miyashiro, H.; Kakiuchi, N.; Hattori, M.;
Stardjo, S.; Shimotohno, K. Phytother. Res. 1997, 11,
433.
6. Sefkow, M. Eur. J. Org. Chem. 2001, 1137.
7. NCCLS, reference method for broth dilution antifungal
susceptibility testing of yeasts; approved standard- second
edition, M27-A2, National Committee for Clinical Lab-
oratory Standards, Villanova, PA 2003.
8. NCCLS, reference method for broth dilution antifungal
susceptibility testing of filamentous fungi; approved stan-
dard, M38-A, National Committee for Clinical Labora-
tory Standards, Villanova, PA 2002.
9. Klein, L. L.; Li, L.; Chen, H. J.; Curty, C. B.; DeGoey, D.
A.; Grampovnik, D. J.; Leone, C. L.; Thomas, S. A.;
Yeung, C. M.; Funk, K. W.; Kishore, V.; Lundell, E. O.;
Wodka, D.; Meulbroek, J. A.; Alder, J. D.; Nilius, A. M.;
Lartey, P. A.; Plattner, J. J. Bioorg. Med. Chem. 2000, 8,
1677.
10. Mclaughlin, J. L. In Methods in Plant Biochemistry;
Hostettmann, K., Ed.; Academic Press: London, 1991;
Vol. 6, pp 1–32.
11. Kapteyn, J. C.; Montijin, R. C.; Dijkgraaf, G. J.; Van den
E nde, H.; Klis, F. M. J. Bacteriol. 1995, 177, 3788.
12. Fonzi, W. A. J. Bacteriol. 1999, 181, 7070.
13. Feldmesser, M.; Kress, Y.; Mednick, A.; Casadevall, A. J.
Infect. Diseases 2000, 182, 179.
14. Fontaine, T.; Simene, C.; Dubreucq, G.; Olivier, A.;
Delepierre, M.; Lemoine, J.; Vorgias, C. E.; Diaquin, M.;
Latge, J.-P. J. Biol. Chem. 2000, 275, 27594.
15. Kollar, R.; Reinhold, B. B.; Petrakova, E.; Yeh, H. J. C.;
Ashwell, G.; Drgonova, J.; Lapteyn, J. C.; Klis, F. M.;
Cabib, E. Biochem. Mol. Biol. 1997, 272, 17762.
16. Little, II, R. G.; Lin, J.-J.; Gikonyo, J. G. K. 2002, US
6,355, 616 B1.
In conclusion, we synthesized a novel series of lipo-
chlorogenic acid derivatives. Most of the synthesized
compounds exhibited potent antifungal activity against
Cryptococcus and Candida species but lower toxicity to
brine shrimps than the parent chlorogenic acid.
These novel compounds may serve as leads for the
development of less toxic drugs with different structural
feature from those of the currently utilized antifungal
agents. The structure–activity relationships discussed
above can provide useful information for further design
and synthesis of compounds with optimized bioactivity
profile. Further studies to optimize the structural feature
as well as to explore the mechanism of action of this no-
vel class of compounds is planned to start in our group
in near future.
Supplementary data
Supplementary data associated with this article can be